Glycogen synthase kinase 3β/CCR6‐positive bone marrow cells correlate with disease activity in multicentric Castleman disease‐TAFRO

Author(s):  
Nobuya Abe ◽  
Michihito Kono ◽  
Michihiro Kono ◽  
Naoki Ohnishi ◽  
Tomoya Sato ◽  
...  
2017 ◽  
Vol 8 (6) ◽  
pp. e2902-e2902 ◽  
Author(s):  
Rafik Mansouri ◽  
Yohann Jouan ◽  
Eric Hay ◽  
Claudine Blin-Wakkach ◽  
Monique Frain ◽  
...  

Abstract Stimulating bone formation is an important challenge for bone anabolism in osteoporotic patients or to repair bone defects. The osteogenic properties of matrix glycosaminoglycans (GAGs) have been explored; however, the functions of GAGs at the surface of bone-forming cells are less documented. Syndecan-2 is a membrane heparan sulfate proteoglycan that is associated with osteoblastic differentiation. We used a transgenic mouse model with high syndecan-2 expression in osteoblasts to enrich the bone surface with cellular GAGs. Bone mass was increased in these transgenic mice. Syndecan-2 overexpression reduced the expression of receptor activator of NF-kB ligand (RANKL) in bone marrow cells and strongly inhibited bone resorption. Osteoblast activity was not modified in the transgenic mice, but bone formation was decreased in 4-month-old transgenic mice because of reduced osteoblast number. Increased proteoglycan expression at the bone surface resulted in decreased osteoblastic and osteoclastic precursors in bone marrow. Indeed, syndecan-2 overexpression increased apoptosis of mesenchymal precursors within the bone marrow. However, syndecan-2 specifically promoted the vasculature characterized by high expression of CD31 and Endomucin in 6-week-old transgenic mice, but this was reduced in 12-week-old transgenic mice. Finally, syndecan-2 functions as an inhibitor of Wnt-β-catenin–T-cell factor signaling pathway, activating glycogen synthase kinase 3 and then decreasing the Wnt-dependent production of Wnt ligands and R-spondin. In conclusion, our results show that GAG supply may improve osteogenesis, but also interfere with the crosstalk between the bone surface and marrow cells, altering the supporting function of osteoblasts.


2006 ◽  
Vol 54 (S 1) ◽  
Author(s):  
C Stamm ◽  
YH Choi ◽  
A Liebold ◽  
HD Kleine ◽  
S Dunkelmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document