scholarly journals Middle Pleistocene ice-marginal sedimentation at a constrained ice-sheet margin, East Anglia, UK

Boreas ◽  
2018 ◽  
Vol 47 (4) ◽  
pp. 1118-1143 ◽  
Author(s):  
Karolina Leszczynska ◽  
Steve Boreham ◽  
Philip L. Gibbard
2021 ◽  
Author(s):  
Parker Liautaud ◽  
Peter Huybers

<p><span>Foregoing studies have found that sea-level transitioned to becoming approximately twice as sensitive to CO</span><span><sub>2</sub></span><span> radiative forcing between the early and late Pleistocene (Chalk et al., 2017; Dyez et al., 2018). In this study we analyze the relationships among sea-level, orbital variations, and CO</span><span><sub>2</sub></span><span> observations in a time-dependent, zonally-averaged energy balance model having a simple ice sheet. Probability distributions for model parameters are inferred using a hierarchical Bayesian method representing model and data uncertainties, including those arising from uncertain geological age models. We find that well-established nonlinearities in the climate system can explain sea-level becoming 2.5x (2.1x - 4.5x) more sensitive to radiative forcing between 2 and 0 Ma. Denial-of-mechanism experiments show that the increase in sensitivity is diminished by 36% (31% - 39%) if omitting geometric effects associated with thickening of a larger ice sheet, by 81% (73% - 92%) if omitting the ice-albedo feedback, and by more than 96% (93% - 98%) if omitting both. We also show that prescribing a fixed sea-level age model leads to different inferences of ice-sheet dimension, planetary albedo, and lags in the response to radiative forcing than if using a more complete approach in which sea-level ages are jointly inferred with model physics. Consistency of the model ice-sheet with geologic constraints on the southern terminus of the Laurentide ice sheet can be obtained by prescribing lower basal shear stress during the early Pleistocene, but such more-expansive ice sheets imply lower CO</span><span><sub>2</sub></span><span> levels than would an ice-sheet having the same aspect ratio as in the late Pleistocene, exacerbating disagreements with </span><span>𝛿</span><span><sup>11</sup></span><span>B-derived CO</span><span><sub>2</sub></span><span> estimates. These results raise a number of possibilities, including that (1) geologic evidence for expansive early-Pleistocene ice sheets represents only intermittent and spatially-limited ice-margin advances, (2) </span><span>𝛿</span><span><sup>11</sup></span><span>B-derived CO</span><span><sub>2</sub></span><span> reconstructions are biased high, or (3) that another component of the global energy balance system, such as the average ice albedo or a process not included in our model, also changed through the middle Pleistocene. Future work will seek to better constrain early-Pleistocene CO</span><span><sub>2</sub></span><span> levels by way of a more complete incorporation of proxy uncertainties and biases into the Bayesian analysis.</span></p>


2019 ◽  
Vol 13 (7) ◽  
pp. 2023-2041 ◽  
Author(s):  
Johannes Sutter ◽  
Hubertus Fischer ◽  
Klaus Grosfeld ◽  
Nanna B. Karlsson ◽  
Thomas Kleiner ◽  
...  

Abstract. The international endeavour to retrieve a continuous ice core, which spans the middle Pleistocene climate transition ca. 1.2–0.9 Myr ago, encompasses a multitude of field and model-based pre-site surveys. We expand on the current efforts to locate a suitable drilling site for the oldest Antarctic ice core by means of 3-D continental ice-sheet modelling. To this end, we present an ensemble of ice-sheet simulations spanning the last 2 Myr, employing transient boundary conditions derived from climate modelling and climate proxy records. We discuss the imprint of changing climate conditions, sea level and geothermal heat flux on the ice thickness, and basal conditions around previously identified sites with continuous records of old ice. Our modelling results show a range of configurational ice-sheet changes across the middle Pleistocene transition, suggesting a potential shift of the West Antarctic Ice Sheet to a marine-based configuration. Despite the middle Pleistocene climate reorganisation and associated ice-dynamic changes, we identify several regions conducive to conditions maintaining 1.5 Myr (million years) old ice, particularly around Dome Fuji, Dome C and Ridge B, which is in agreement with previous studies. This finding strengthens the notion that continuous records with such old ice do exist in previously identified regions, while we are also providing a dynamic continental ice-sheet context.


Boreas ◽  
2008 ◽  
Vol 31 (4) ◽  
pp. 345-355 ◽  
Author(s):  
JONATHAN R. LEE ◽  
JAMES ROSE ◽  
JAMES B. RIDING ◽  
BRIAN S. P. MOORLOCK ◽  
RICHARD J. O. HAMBLIN

2019 ◽  
Vol 85 ◽  
pp. 61-81 ◽  
Author(s):  
Mark White ◽  
Nick Ashton ◽  
David Bridgland

A better understood chronological framework for the Middle Pleistocene of Britain has enabled archaeologists to detect a number of temporally-restricted assemblage-types, based not on ‘culture historical’ schemes of typological progression but on independent dating methods and secure stratigraphic frameworks, especially river-terrace sequences. This includes a consistent pattern in the timing of Clactonian and Levalloisian industries, as well as a number of handaxe assemblage types that belong to different interglacial cycles. In other words, Derek Roe’s hunch that the apparent lack of coherent ‘cultural’ patterning was due to an inaccurate and inadequate chronological framework was correct. Some variation in handaxe shape is culturally significant. Here we focus on twisted ovate handaxes, which we have previously argued to belong predominantly to MIS 11. Recent discoveries have enabled us to refine our correlations. Twisted ovate assemblages are found in different regions of Britain in different substages of MIS 11 (East Anglia in MIS 11c and south of the Thames in MIS 11a), the Thames, and the MIS 11b cold interval separating the two occurrences. These patterns have the potential to reveal much about hominin settlement patterns, behaviour, and social networks during the Middle Pleistocene.


Boreas ◽  
2002 ◽  
Vol 31 (4) ◽  
pp. 345-355 ◽  
Author(s):  
Jonathan R. Lee ◽  
James Rose ◽  
James B. Riding ◽  
Brian S. P. Moorlock ◽  
Richard J. O. Hamblin

Boreas ◽  
2011 ◽  
Vol 41 (3) ◽  
pp. 319-336 ◽  
Author(s):  
Philip L. Gibbard ◽  
Richard G. West ◽  
Steve Boreham ◽  
Christopher J. Rolfe

2003 ◽  
Vol 59 (3) ◽  
pp. 386-398 ◽  
Author(s):  
Julie Brigham-Grette ◽  
Lyn M. Gualtieri ◽  
Olga Yu Glushkova ◽  
Thomas D. Hamilton ◽  
David Mostoller ◽  
...  

AbstractThe Pekulney Mountains and adjacent Tanyurer River valley are key regions for examining the nature of glaciation across much of northeast Russia. Twelve new cosmogenic isotope ages and 14 new radiocarbon ages in concert with morphometric analyses and terrace stratigraphy constrain the timing of glaciation in this region of central Chukotka. The Sartan Glaciation (Last Glacial Maximum) was limited in extent in the Pekulney Mountains and dates to ∼20,000 yr ago. Cosmogenic isotope ages > 30,000 yr as well as non-finite radiocarbon ages imply an estimated age no younger than the Zyryan Glaciation (early Wisconsinan) for large sets of moraines found in the central Tanyurer Valley. Slope angles on these loess-mantled ridges are less than a few degrees and crest widths are an order of magnitude greater than those found on the younger Sartan moraines. The most extensive moraines in the lower Tanyurer Valley are most subdued implying an even older, probable middle Pleistocene age. This research provides direct field evidence against Grosswald’s Beringian ice-sheet hypothesis.


Sign in / Sign up

Export Citation Format

Share Document