pleistocene climate
Recently Published Documents


TOTAL DOCUMENTS

407
(FIVE YEARS 92)

H-INDEX

50
(FIVE YEARS 5)

2022 ◽  
Vol 277 ◽  
pp. 107287
Author(s):  
Nadine Berner ◽  
Martin H. Trauth ◽  
Matthias Holschneider

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
José Martín Pujolar ◽  
Mozes P. K. Blom ◽  
Andrew Hart Reeve ◽  
Jonathan D. Kennedy ◽  
Petter Zahl Marki ◽  
...  

AbstractTropical mountains harbor exceptional concentrations of Earth’s biodiversity. In topographically complex landscapes, montane species typically inhabit multiple mountainous regions, but are absent in intervening lowland environments. Here we report a comparative analysis of genome-wide DNA polymorphism data for population pairs from eighteen Indo-Pacific bird species from the Moluccan islands of Buru and Seram and from across the island of New Guinea. We test how barrier strength and relative elevational distribution predict population differentiation, rates of historical gene flow, and changes in effective population sizes through time. We find population differentiation to be consistently and positively correlated with barrier strength and a species’ altitudinal floor. Additionally, we find that Pleistocene climate oscillations have had a dramatic influence on the demographics of all species but were most pronounced in regions of smaller geographic area. Surprisingly, even the most divergent taxon pairs at the highest elevations experience gene flow across barriers, implying that dispersal between montane regions is important for the formation of montane assemblages.


2022 ◽  
Vol 578 ◽  
pp. 117326
Author(s):  
Saptarshi Dey ◽  
Bodo Bookhagen ◽  
Rasmus C. Thiede ◽  
Hella Wittmann ◽  
Naveen Chauhan ◽  
...  

2021 ◽  
Vol 17 (6) ◽  
pp. 2653-2677
Author(s):  
Yoav Ben Dor ◽  
Francesco Marra ◽  
Moshe Armon ◽  
Yehouda Enzel ◽  
Achim Brauer ◽  
...  

Abstract. Annual and decadal-scale hydroclimatic variability describes key characteristics that are embedded into climate in situ and is of prime importance in subtropical regions. The study of hydroclimatic variability is therefore crucial to understand its manifestation and implications for climate derivatives such as hydrological phenomena and water availability. However, the study of this variability from modern records is limited due to their relatively short span, whereas model simulations relying on modern dynamics could misrepresent some of its aspects. Here we study annual to decadal hydroclimatic variability in the Levant using two sedimentary sections covering ∼ 700 years each, from the depocenter of the Dead Sea, which has been continuously recording environmental conditions since the Pleistocene. We focus on two series of annually deposited laminated intervals (i.e., varves) that represent two episodes of opposing mean climates, deposited during MIS2 lake-level rise and fall at ∼ 27 and 18 ka, respectively. These two series comprise alternations of authigenic aragonite that precipitated during summer and flood-borne detrital laminae deposited by winter floods. Within this record, aragonite laminae form a proxy of annual inflow and the extent of epilimnion dilution, whereas detrital laminae are comprised of sub-laminae deposited by individual flooding events. The two series depict distinct characteristics with increased mean and variance of annual inflow and flood frequency during “wetter”, with respect to the relatively “dryer”, conditions, reflected by opposite lake-level changes. In addition, decades of intense flood frequency (clusters) are identified, reflecting the in situ impact of shifting centennial-scale climate regimes, which are particularly pronounced during wetter conditions. The combined application of multiple time series analyses suggests that the studied episodes are characterized by weak and non-significant cyclical components of sub-decadal frequencies. The interpretation of these observations using modern synoptic-scale hydroclimatology suggests that Pleistocene climate changes resulted in shifts in the dominance of the key synoptic systems that govern rainfall, annual inflow and flood frequency in the eastern Mediterranean Sea over centennial timescales.


2021 ◽  
Vol 9 ◽  
Author(s):  
Amin Ghafarpour ◽  
Farhad Khormali ◽  
Xianqiang Meng ◽  
Hossein Tazikeh ◽  
Thomas Stevens

Paleoclimatic investigation of loess-paleosol sequences from northern Iran is important for understanding past changes in a region highly sensitive to shifts in precipitation, and along potential routes of past human migration. Here, we present carbon and oxygen isotopic compositions of bulk carbonate (δ13Cbc and δ18Obc, respectively) coupled with particle size distributions of samples from the Mobarakabad section, northern Iran, to study past wind dynamics and hydroclimate. We also present new initial clay-sized Hf-Nd isotope results from key horizons in order to assess general dust sources. Variations of δ13Cbc and δ18Obc values of modern soils compared to paleosols allow reconstruction of late Pleistocene–Holocene climate change in the area. Our results show severe drought during a major eolian deposition phase (EDP) after 34 ka. The thickness and PSD of the C horizon of unit 5 suggest significant shifts in loess sources and depositional environments during this EDP after 34 ka. Indeed, based on our new clay-sized Hf-Nd data, we hypothesize that the loess unit 5 might originate from the young crustal source of the Alborz and Kopet Dagh mountains. In general, the PSD of C horizons in the section is bimodal in the silt fraction and the very small, very fine clay fraction, with a mode at c. 1 μm in the modern soil and paleosols possibly produced by weathering and pedogenic processes. There also appears to be a good correlation between δ13Cbc and δ18Obc values, differentiating phases of loess accumulation and paleosol formation and hence providing quantitative data for reconstructing paleoclimatic conditions in the study area.


Sign in / Sign up

Export Citation Format

Share Document