Supraoptimal temperatures influence the range dynamics of a non-native insect

2014 ◽  
Vol 20 (7) ◽  
pp. 813-823 ◽  
Author(s):  
Patrick C. Tobin ◽  
David R. Gray ◽  
Andrew M. Liebhold
Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 357
Author(s):  
Jong Kyu Lee ◽  
Myeong Ja Kwak ◽  
Sang Hee Park ◽  
Han Dong Kim ◽  
Yea Ji Lim ◽  
...  

Plants are affected by the features of their surrounding environment, such as climate change and air pollution caused by anthropogenic activities. In particular, agricultural production is highly sensitive to environmental characteristics. Since no environmental factor is independent, the interactive effects of these factors on plants are essential for agricultural production. In this context, the interactive effects of ozone (O3) and supraoptimal temperatures remain unclear. Here, we investigated the physiological and stomatal characteristics of leaf mustard (Brassica juncea L.) in the presence of charcoal-filtered (target concentration, 10 ppb) and elevated (target concentration, 120 ppb) O3 concentrations and/or optimal (22/20 °C day/night) and supraoptimal temperatures (27/25 °C). Regarding physiological characteristics, the maximum rate of electron transport and triose phosphate use significantly decreased in the presence of elevated O3 at a supraoptimal temperature (OT conditions) compared with those in the presence of elevated O3 at an optimal temperature (O conditions). Total chlorophyll content was also significantly affected by supraoptimal temperature and elevated O3. The chlorophyll a/b ratio significantly reduced under OT conditions compared to C condition at 7 days after the beginning of exposure (DAE). Regarding stomatal characteristics, there was no significant difference in stomatal pore area between O and OT conditions, but stomatal density under OT conditions was significantly increased compared with that under O conditions. At 14 DAE, the levels of superoxide (O2-), which is a reactive oxygen species, were significantly increased under OT conditions compared with those under O conditions. Furthermore, leaf weight was significantly reduced under OT conditions compared with that under O conditions. Collectively, these results indicate that temperature is a key driver of the O3 response of B. juncea via changes in leaf physiological and stomatal characteristics.


2021 ◽  
Vol 24 (4) ◽  
pp. 772-780
Author(s):  
Meagan F. Oldfather ◽  
Michael J. Koontz ◽  
Daniel F. Doak ◽  
David D. Ackerly
Keyword(s):  

2010 ◽  
Vol 19 (04) ◽  
pp. 548-557 ◽  
Author(s):  
D. VRETENAR ◽  
T. NIKŠIĆ ◽  
P. RING

A class of relativistic nuclear energy density functionals is explored, in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance correlations, as well as intermediate and long-range dynamics, are encoded in the nucleon-density dependence of the strength functionals of an effective interaction Lagrangian. The resulting phenomenological effective interaction, adjusted to experimental binding energies of a large set of axially deformed nuclei, together with a new separable pairing interaction adjusted to reproduce the pairing gap in nuclear matter calculated with the Gogny force, is applied in triaxial relativistic Hartree-Bogoliubov calculations of sequences of heavy nuclei: Th , U , Pu , Cm , Cf , Fm , and No .


2017 ◽  
Vol 121 (3) ◽  
pp. 627-640 ◽  
Author(s):  
Hossein Javanbakht ◽  
Flora Ihlow ◽  
Daniel Jablonski ◽  
Pavel Široký ◽  
Uwe Fritz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document