Use of contact chemical cues in prey discrimination byCerceris fumipennis

2014 ◽  
Vol 153 (2) ◽  
pp. 93-105 ◽  
Author(s):  
Claire E. Rutledge ◽  
Peter J. Silk ◽  
Peter Mayo
2020 ◽  
Vol 7 (2) ◽  
pp. 191705 ◽  
Author(s):  
Hugo Pereira ◽  
Claire Detrain

Insect societies have developed sanitary strategies, one of which is the avoidance of infectious food resources as a primary line of defence. Using binary choices, we investigated whether Myrmica rubra ants can identify prey that has been artificially infected with the entomopathogenic fungus, Metarhizium brunneum . We compared the ants' foraging behaviour towards infected prey at three different stages of fungus development : (i) prey covered with fungal conidia, (ii) prey freshly killed by the fungus and (iii) sporulating prey. Most foragers retrieved a corpse covered with a high number of spores but they consistently avoided a sporulating prey and collected less prey that had recently died from fungal infection. Furthermore, ant responses were highly variable, with some individuals retrieving the first prey they encountered while others inspected both available prey before making a decision. Workers were not repelled by the simple presence of fungal conidia but nevertheless, they avoided retrieving cadavers at later stages of fungal infection. We discuss how these different avoidance responses could be related to: differences in the ants’ perceptive abilities; physico-chemical cues characterizing fungus-infected prey or in the existence of physiological or behavioural defences that limit sanitary risks associated with potentially contaminated resources.


2021 ◽  
Vol 537 ◽  
pp. 151516
Author(s):  
Emily E. Waddell ◽  
Wendy E.D. Piniak ◽  
Kathleen A. Reinsel ◽  
James M. Welch

Chemoecology ◽  
2021 ◽  
Author(s):  
Roman Bucher ◽  
Laura M. Japke ◽  
Ayse Gül Ünlü ◽  
Florian Menzel

AbstractThe predator-predator naïveté hypothesis suggests that non-native predators benefit from being unknown to native predators, resulting in reduced intraguild interference with native predators. This novelty advantage should depend on the ability of native predators to recognize cues of non-native predators. Here, we compared ant aggression and lady beetle reaction in four native and the invasive lady beetle species Harmonia axyridis. In addition, we tested whether lady beetle cuticular hydrocarbons (CHCs) are involved in species recognition, which might explain naïveté if the invasive species has a specific CHC profile. To this end, we conducted behavioral assays confronting two native ant species with both living lady beetles and lady beetle elytra bearing or lacking CHCs of different lady beetle species. Finally, we characterized CHC profiles of the lady beetles using GC–MS. In general, the aggression of Lasius niger was more frequent than that of Myrmica rubra and L. niger aggression was more frequent towards most native lady beetle species compared to H. axyridis. The removal of CHCs from lady beetle elytra reduced aggression of both ant species. If CHCs of respective lady beetle species were added on cue-free elytra, natural strength of L. niger aggression could be restored. CHC analyses revealed a distinct cue composition for each lady beetle species. Our experiments demonstrate that the presence of chemical cues on the surface of lady beetles contribute to the strength of ant aggression against lady beetles. Reduced aggression of L. niger towards H. axyridis and reduced avoidance behavior in H. axyridis compared to the equally voracious C. septempunctata might improve the invasive lady beetle’s access to ant-tended aphids.


2021 ◽  
Author(s):  
Stefan Kusch ◽  
Justine Larrouy ◽  
Heba M. M. Ibrahim ◽  
Shantala Mounichetty ◽  
Noémie Gasset ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander I. Novichkov ◽  
Anton I. Hanopolskyi ◽  
Xiaoming Miao ◽  
Linda J. W. Shimon ◽  
Yael Diskin-Posner ◽  
...  

AbstractAutocatalytic and oscillatory networks of organic reactions are important for designing life-inspired materials and for better understanding the emergence of life on Earth; however, the diversity of the chemistries of these reactions is limited. In this work, we present the thiol-assisted formation of guanidines, which has a mechanism analogous to that of native chemical ligation. Using this reaction, we designed autocatalytic and oscillatory reaction networks that form substituted guanidines from thiouronium salts. The thiouronium salt-based oscillator show good stability of oscillations within a broad range of experimental conditions. By using nitrile-containing starting materials, we constructed an oscillator where the concentration of a bicyclic derivative of dihydropyrimidine oscillates. Moreover, the mixed thioester and thiouronium salt-based oscillator show unique responsiveness to chemical cues. The reactions developed in this work expand our toolbox for designing out-of-equilibrium chemical systems and link autocatalytic and oscillatory chemistry to the synthesis of guanidinium derivatives and the products of their transformations including analogs of nucleobases.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 357
Author(s):  
Muhammad Syamsu Rizaludin ◽  
Nejc Stopnisek ◽  
Jos M. Raaijmakers ◽  
Paolina Garbeva

Plants are faced with various biotic and abiotic stresses during their life cycle. To withstand these stresses, plants have evolved adaptive strategies including the production of a wide array of primary and secondary metabolites. Some of these metabolites can have direct defensive effects, while others act as chemical cues attracting beneficial (micro)organisms for protection. Similar to aboveground plant tissues, plant roots also appear to have evolved “a cry for help” response upon exposure to stress, leading to the recruitment of beneficial microorganisms to help minimize the damage caused by the stress. Furthermore, emerging evidence indicates that microbial recruitment to the plant roots is, at least in part, mediated by quantitative and/or qualitative changes in root exudate composition. Both volatile and water-soluble compounds have been implicated as important signals for the recruitment and activation of beneficial root-associated microbes. Here we provide an overview of our current understanding of belowground chemical communication, particularly how stressed plants shape its protective root microbiome.


Parasitology ◽  
2020 ◽  
pp. 1-7
Author(s):  
Sajad Farahani ◽  
Per J. Palsbøll ◽  
Ido Pen ◽  
Jan Komdeur

Abstract The acanthocephalan parasite, Polymorphus minutus, manipulates its intermediate hosts' (gammarids) behaviour, presumably to facilitate its transmission to the definitive hosts. A fundamental question is whether this capability has evolved to target gammarids in general, or specifically sympatric gammarids. We assessed the responses to chemical cues from a non-host predator (the three-spined sticklebacks Gasterosteus aculeatus) in infected and non-infected gammarids; two native (Gammarus pulex and Gammarus fossarum), and one invasive (Echinogammarus berilloni) species, all sampled in the Paderborn Plateau (Germany). The level of predator avoidance was assessed by subjecting gammarids to choice experiments with the presence or absence of predator chemical cues. We did not detect any behavioural differences between uninfected and infected G. pulex and E. berilloni, but an elevated degree of predator avoidance in infected G. fossarum. Avoiding non-host predators may ultimately increase the probability of P. minutus' of predation by the definitive host. Our results suggested that P. minutus' ability to alter the host's behaviour may have evolved to specifically target sympatric gammarid host species. Uninfected gammarids did not appear to avoid the non-host predator chemical cues. Overall the results also opened the possibility that parasites may play a critical role in the success or failure of invasive species.


Oikos ◽  
1996 ◽  
Vol 77 (2) ◽  
pp. 331 ◽  
Author(s):  
Robert D. Moore ◽  
Blake Newton ◽  
Andrew Sih

Sign in / Sign up

Export Citation Format

Share Document