predator avoidance
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 70)

H-INDEX

60
(FIVE YEARS 5)

2021 ◽  
Vol 20 (2) ◽  
pp. 159-164
Author(s):  
Santosh M. Mogali ◽  
Bhagyashri A. Shanbhag ◽  
Srinivas K. Saidapur

The comparative vulnerability of two co-existing tadpole species (Indosylvirana temporalis and Clinotarsus curtipes) to their common predator, water scorpions (Laccotrephes sp.; Hemiptera: Nepidae), and the importance of refugia in predator avoidance were studied in the laboratory. In a total of 60 experimental trials, 10 tadpoles each of I. temporalis and C. curtipes of comparable body sizes were exposed to water scorpions (starved for 48 h). Thirty trials included refugia while 30 did not. The results of this study showed that in both the absence and the presence of refugia C. curtipes tadpoles fell prey to water scorpions more frequently than I. temporalis tadpoles. A main difference between the two species is the speed of swimming; Vmax of C. curtipes (24.73 cm/s) tadpoles is lower than that of I. temporalis (30.78 cm/s) tadpoles. This is likely to be the reason why more C. curtipes tadpoles were preyed upon than were I. temporalis tadpoles. Predation risk of tadpoles of both species was affected significantly by the presence of refuge sites. The vulnerability of both tadpole species was lower where refuge sites were available. The present study clearly shows that I. temporalis tadpoles avoid predation by water scorpions more effectively than do C. curtipes tadpoles.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Colin P. Gallagher ◽  
Luke Storrie ◽  
Michael B. Courtney ◽  
Kimberly L. Howland ◽  
Ellen V. Lea ◽  
...  

Abstract Background We report compelling evidence suggesting a predation event of a pop-up satellite archival tagged anadromous Dolly Varden (Salvelinus malma) by a marine mammal during summer in the Beaufort Sea based on abrupt changes in temperature and vertical movements. This observation provides insight on predator avoidance behaviour by Dolly Varden and the predator’s feeding frequency while the tag was ingested. Based on published distribution and ecology information, we presumed the predator was a beluga whale (Delphinapterus leucas). Supplemental satellite telemetry data from previously tagged Dolly Varden and beluga whales were used to determine the extent of spatial and vertical overlap between species in the area where predation occurred. Results Prior to the predation event, depths and temperatures occupied by the tagged Dolly Varden averaged 1.1 m and 3.1 °C, respectively. On July 7, 2020, depths remained shallow apart from a sudden dive to 12.5 m (16:45 UTC) followed by a precipitous increase in temperature from 4.4 to 27.1 °C (16:52 UTC) suggesting predation by an endotherm. Subsequent readings indicated the endotherm had a resting stomach temperature of 36.1 °C. Including the predation event, eight separate feeding events were inferred during the 20-h period the tag was ingested (before presumed regurgitation) based on subsequent declines in stomach temperatures (mean decline to 31.1 °C) that took an average of 24.1 min to return to resting temperature. The predator occupied mainly shallow depths (mean = 2.3 m), overlapping with tagged belugas that spent 76.9% of their time occupying waters ≤ 2.5 m when frequenting the area occupied by tagged Dolly Varden in the Canadian Beaufort Sea in July. Back-calculation based on tag drift and mean displacement by tagged belugas indicated the predation likely occurred west of the Mackenzie Delta. Conclusion Our findings provide new information on both anti-predator behaviour by, and marine predators of, Dolly Varden in the Beaufort Sea. We provide the first estimate of feeding frequency and stomach temperature recovery in a presumed wild beluga, and evidence for shallow foraging behaviour by belugas. Elucidating the likely predator and exploring the extent of overlap between Dolly Varden and beluga whales contributes towards knowledge on the trophic interactions in the Beaufort Sea.


Author(s):  
Birgit Szabo ◽  
Rosanna Mangione ◽  
Matthias Rath ◽  
Andrius Pašukonis ◽  
Stephan A. Reber ◽  
...  

For animals to survive until reproduction, it is crucial that juveniles successfully detect potential predators and respond with appropriate behavior. The recognition of cues originating from predators can be innate or learned. Cues of various modalities might be used alone or in multi-modal combinations to detect and distinguish predators but studies investigating multi-modal integration in predator avoidance are scarce. Here, we used wild, naive tadpoles of the Neotropical Poison Frog Allobates femoralis (Boulenger, 1884) to test their reaction to cues with two modalities from two different sympatrically occurring potential predators: heterospecific predatory Dendrobates tinctorius tadpoles and dragonfly larvae. We presented A. femoralis tadpoles with olfactory or visual cues, or a combination of both and compared their reaction to a water-control in a between-individual design. In our trials, A. femoralis tadpoles reacted to multimodal stimuli (a combination of visual and chemical information) originating from dragonfly larvae with avoidance but showed no reaction to uni-modal cues or cues from heterospecific tadpoles. In addition, visual cues from conspecifics increased swimming activity while cues from predators had no effect on tadpole activity. Our results show that A. femoralis tadpoles can innately recognize some predators and likely need both visual and chemical information to effectively avoid them. This is the first study looking at anti-predator behavior in Poison Frog tadpoles. We discuss how parental care might influence the expression of predator avoidance responses in tadpoles.


2021 ◽  
Author(s):  
Gareth S. Powell ◽  
Natalie A. Saxton ◽  
Yelena Pacheco ◽  
Kathrin F. Stanger-Hall ◽  
Gavin J. Martin ◽  
...  

Bioluminescence is found across life and has many functions. Yet we understand very little about its timing and origins, particularly as a predator avoidance strategy. Understanding the timing between bioluminescence and predator origins has yet to be examined and can help elucidate the evolution of the ecologically important signal aposematism. Using the most prevalent bioluminescent group, fireflies, where bioluminescence primarily functions as aposematic and sexual signals, the timing for the origins of both potential predators of fireflies and bioluminescence is explored. Divergence time estimations were performed using a genomic-scale phylogenetic reconstruction Lampyridae, and multiple fossil calibration points, allowing for a robust estimate for the origin of beetle bioluminescence as both a terrestrial and aerial signal. Our results recover the origins of terrestrial beetle bioluminescence at 141 mya and aerial bioluminescence at 133 mya. These ages predate the origins of all known extant aerial predators (i.e., bats and birds) and support the much older terrestrial predators (frogs, ground beetles, lizards, snakes, and hunting spiders) as the most likely drivers of bioluminescence in beetles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keisuke Tanaka ◽  
Ken Sasaki ◽  
Kentarou Matsumura ◽  
Shunsuke Yajima ◽  
Takahisa Miyatake

AbstractPredator avoidance is an important behavior that affects the degree of adaptation of organisms. We compared the DNA variation of one of the predator-avoidance behaviors, the recently extensively studied "death-feigning behavior”, between the long strain bred for feigning death for a long time and the short strain bred for feigning death for a short time. To clarify how the difference in DNA sequences between the long and short strains corresponds to the physiological characteristics of the death-feigning duration at the transcriptome level, we performed comprehensive and comparative analyses of gene variants in Tribolium castaneum strains using DNA-resequencing. The duration of death feigning involves many gene pathways, including caffeine metabolism, tyrosine metabolism, tryptophan metabolism, metabolism of xenobiotics by cytochrome P450, longevity regulating pathways, and circadian rhythm. Artificial selection based on the duration of death feigning results in the preservation of variants of genes in these pathways in the long strain. This study suggests that many metabolic pathways and related genes may be involved in the decision-making process of anti-predator animal behavior by forming a network in addition to the tyrosine metabolic system, including dopamine, revealed in previous studies.


Author(s):  
Addisu Mekonnen ◽  
Peter J. Fashing ◽  
Vivek V. Venkataraman ◽  
Colin A. Chapman ◽  
Nils Chr. Stenseth ◽  
...  

AbstractAlthough selecting advantageous sleeping sites is crucial for nonhuman primates, the extent to which different factors contribute to their selection remains largely unknown for many species. We investigated hypotheses relating to predator avoidance, food access, and thermoregulation to explain the sleeping behavior of Bale monkeys (Chlorocebus djamdjamensis) occupying a degraded fragmented forest, Kokosa, in the southern Ethiopian Highlands. We found that the study group reused 11 out of 20 sleeping sites used during the 42 study days over a 6-month period. Sleeping sites were usually close to the last feeding trees of the day (mean distance =15.2 m) and/or the first feeding trees of the next morning (mean distance = 13.5 m). This may reflect an attempt to maximize feeding efficiency and reduce travel costs. Compared to the mean trees in the study area, sleeping trees were significantly shorter. Bale monkeys selected sleeping places in trees with high foliage density above and below them, lending support to the hypothesis that they select sleeping places that can conceal them from predators and at the same time offer shelter from cold weather. The monkeys also frequently huddled at night. Our results suggest that predator avoidance, access to food resources, and thermoregulation all likely influence the selection of sleeping sites by Bale monkeys.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Petr Veselý ◽  
Juraj Dobrovodský ◽  
Roman Fuchs

AbstractMyrmecomorphy is a strategy utilized by a variety of species, among which spiders are the most common. It is supposed that myrmecomorphy tends to be selected by predator avoidance of preying on ants rather than by blind ant workers. To date, this hypothesis has been tested mainly on invertebrate predators (mantises and spiders). We are the first to test whether an imperfect myrmecomorph spider (Phrurolithus festivus) gains protection against avian predators (wild adult great tits—Parus major) through its appearance. In a set of preferential trials, we showed that the ant model and the myrmecomorph spider are equally well protected against attack, though the attacked myrmecomorphs are usually eaten. This suggests that the mimicry of the myrmecomorph spiders is effective against avian predators and works in a Batesian manner. In this study, we have provided evidence toward the evolution of myrmecomorphy in response to selective pressure elicited by visually-oriented predators like birds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shukria Akbar ◽  
D. Cole Stevens

AbstractPredation contributes to the structure and diversity of microbial communities. Predatory myxobacteria are ubiquitous to a variety of microbial habitats and capably consume a broad diversity of microbial prey. Predator–prey experiments utilizing myxobacteria have provided details into predatory mechanisms and features that facilitate consumption of prey. However, prey resistance to myxobacterial predation remains underexplored, and prey resistances have been observed exclusively from predator–prey experiments that included the model myxobacterium Myxococcus xanthus. Utilizing a predator–prey pairing that instead included the myxobacterium, Cystobacter ferrugineus, with Pseudomonas putida as prey, we observed surviving phenotypes capable of eluding predation. Comparative transcriptomics between P. putida unexposed to C. ferrugineus and the survivor phenotype suggested that increased expression of efflux pumps, genes associated with mucoid conversion, and various membrane features contribute to predator avoidance. Unique features observed from the survivor phenotype when compared to the parent P. putida include small colony variation, efflux-mediated antibiotic resistance, phenazine-1-carboxylic acid production, and increased mucoid conversion. These results demonstrate the utility of myxobacterial predator–prey models and provide insight into prey resistances in response to predatory stress that might contribute to the phenotypic diversity and structure of bacterial communities.


Sign in / Sign up

Export Citation Format

Share Document