Floral resource pulse decreases bumble bee foraging trip duration in central Wisconsin agroecosystem

2018 ◽  
Vol 43 (4) ◽  
pp. 447-457 ◽  
Author(s):  
Jeremy Hemberger ◽  
Claudio Gratton
Ecosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Avery L. Russell ◽  
María Rebolleda‐Gómez ◽  
Tierney Marie Shaible ◽  
Tia‐Lynn Ashman

2014 ◽  
Vol 39 (3) ◽  
pp. 334-342 ◽  
Author(s):  
BENOÎT GESLIN ◽  
MATHILDE BAUDE ◽  
FRANCOIS MALLARD ◽  
ISABELLE DAJOZ

1979 ◽  
Vol 57 (10) ◽  
pp. 1866-1870 ◽  
Author(s):  
L. K. Hartling ◽  
R. C. Plowright

A remotely controlled artificial flower system for investigation of bumble bee foraging behaviour in the laboratory is described. The behaviour of Bombus atratus Fkln. workers from captive colonies trained to forage on patches of artificial flowers in a flight room conformed well to the predictions of optimal foraging theory. Within-patch movement was systematic, tending to minimize repeat visits to flowers sampled previously. Between-patch movement was influenced both by frequency of encounters with empty flowers in the first patch and by inter-patch distance.


Ecology ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 179-187 ◽  
Author(s):  
Clayton M. Hodges
Keyword(s):  

2019 ◽  
Author(s):  
Douglas B. Sponsler ◽  
Don Shump ◽  
Rodney T. Richardson ◽  
Christina M. Grozinger

AbstractRoughly a third of described insect species visit flowers, making the flower-insect interface one of the chief pillars of global biodiversity. Studying flower-insect relationships at the scale of communities and landscapes has been hindered, however, by the methodological challenges of quantifying landscape-scale floral resources. This challenge is especially acute in urban landscapes, where traditional floral surveying techniques are ill-suited to the unique constraints of built environments. To surmount these challenges, we devised a “honey bee foraging assay” approach to floral resource surveying, wherein continuous colony weight tracking and DNA metabarcoding of pollen samples are used to capture both the overall availability and taxonomic composition of floral resources. We deploy this methodology in the complex urban ecosystem of Philadelphia, PA, U.S. Our results reveal distinct seasonality of floral resource availability, with pulses of high availability in May, June, and September, and a period of prolonged scarcity in August. Pollen genus richness mirrored this pattern, with peak richness in May and June. The taxonomic composition of pollen samples varied seasonally, reflecting underlying floral phenology, with especially strong turnover between May and June samples and between August and September samples delineating well-defined spring, summer, and fall floral resource communities. Trait analysis also revealed marked seasonal structure, with spring samples characterized by trees and shrubs, summer samples including a stronger presence of herbaceous “weeds”, and fall samples dominated by woody vines. Native flora predominated in spring, giving way to a preponderance of exotic flora in summer and fall. Our study provides a detailed portrait of floral resources in a complex urban environment. At a basic level, this yields insight into the assembly of novel urban floral resource communities, showcasing, for example, the emergence of a woody-vine-dominated fall flora. At an applied level, our data can inform urban land management, such as the design of ecologically functional ornamental plantings, while also providing practical guidance to beekeepers seeking to adapt their management activities to floral resource seasonality. Methodologically, our study demonstrates the potential of the honey bee foraging assay as an efficient and standardizable technique for landscape-scale floral resource surveying.


2019 ◽  
Vol 34 (5) ◽  
pp. 979-996 ◽  
Author(s):  
Vera Pfeiffer ◽  
Janet Silbernagel ◽  
Christelle Guédot ◽  
Juan Zalapa
Keyword(s):  

2017 ◽  
Vol 149 (2) ◽  
pp. 204-213 ◽  
Author(s):  
S.D. Gillespie ◽  
J. Bayley ◽  
E. Elle

AbstractIntegration of pollinator-dependent invasive plants into native pollination networks can have direct and indirect effects on local plant and pollinator communities. Impacts on local plants are well documented; however effects on native pollinators have gained less attention. We examine these issues in habitat fragments of the endangered oak-savannah ecosystem in British Columbia, Canada. We measured pollen collection by native bumble bees (Bombus Latreille; Hymenoptera: Apidae) and the introduced honey bee (Apis mellifera Linnaeus; Hymenoptera: Apidae) foraging on two common native plants in habitat fragments with varying invasive (Cytisus scoparius (Linnaeus) Link; Fabaceae) density. The Bombus species with the largest workers had higher proportions of invasive pollen on their bodies and in their corbiculae than smaller workers. Honey bees rarely collected C. scoparius pollen. While some native bumble bees species collect an increasing proportion of C. scoparius pollen with increasing C. scoparius density, this did not translate into an increased potential for pollination. Rather, measures of effective pollination decline with C. scoparius density. Overall, our results suggest that some bee species may be better at finding resources at highly invaded sites. Apis mellifera is likely not playing a major role in facilitating the spread of C. scoparius in our region. Rather C. scoparius is visited by a complement of native bumble bees that are similar to pollinators in the native range of this plant.


1999 ◽  
Vol 14 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Heidi E. M. Dobson ◽  
Erica M. Danielson ◽  
Isaac D. Van Wesep
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document