Forest bees are replaced in agricultural and urban landscapes by native species with different phenologies and life-history traits

2017 ◽  
Vol 24 (1) ◽  
pp. 287-296 ◽  
Author(s):  
Tina Harrison ◽  
Jason Gibbs ◽  
Rachael Winfree
Author(s):  
Amy Krist ◽  
Lusha Tronstad ◽  
Heather Julien ◽  
Todd Koel

Introduced, non-native predators often impact native species and ecosystems. These effects can be particularly devastating to native organisms because they are often naïve to the effects of non-native predators (Park 2004, Lockwood et al. 2007). Interestingly, naïve prey are more common in freshwater than in terrestrial ecosystems (Cox and Lima 2006). For example, introduced predators in lakes have caused local extinctions of native animals (e.g., Brooks and Dodson 1965, Witte et al. 1992) and altered food webs (e.g., Witte et al. 1992; Tronstad, Hall, Koel, in review). Because predators eliminate a prey's fitness, predation is an important selective force. Selection on prey can occur directly on morphology, behavior and life-history traits by altering the mean expression of a trait in a population. Selection on prey can also act indirectly, favoring phenotypic plasticity which ameliorates the effects of predation. Thus, among the many impacts of non-native predators in their introduced range, these animals can alter the morphology, behavior and life-history traits of their prey (e.g., Reznick and Endler 1982, Crowl and Covich 1990, Skelly and Werner 1990, Krist 2002).


2015 ◽  
Vol 31 (6) ◽  
pp. 563-566 ◽  
Author(s):  
Daniel J. Nicholson ◽  
Christopher Hassall ◽  
Julius A. Frazier

Abstract:This study compared the life histories of Hemidactylus frenatus, a significant invasive gecko, and Phyllodactylus palmeus, a Honduran endemic, over 10 wk, June–August 2013 at 12 study sites on the Honduran island of Cayo Menor of the Cayo Cochinos archipelago where H. frenatus arrived in 2008. Three different life-history traits related to invasion success were measured: body size, fecundity and population size. During the study 140 natives and 37 non-natives were captured, weighed, measured and marked uniquely. The number of gravid females and number of eggs were also recorded. Phyllodactylus palmeus was the significantly larger of the two species (60% larger mass, 25% longer SVL) and had higher population abundance at all 12 study sites with some sites yielding no H. frenatus individuals. However, H. frenatus had a larger proportion of gravid females. Observations that the native species is more common despite being sympatric with a known aggressive invader suggest two possibilities: the island is at the start of an invasion, or that the two species co-exist in a more stable fashion.


2021 ◽  
Author(s):  
Ingrid Ané Minnaar ◽  
Cang Hui ◽  
Susana Clusella-Trullas

Abstract The plasticity of performance traits is expected to promote the successful invasion of species. Therefore, the comparison of reaction norms of invasive species with native competitors should enhance predictions of alien species establishment. Yet, most studies focus on a reduced set of traits, rarely in combination, or do not include trait variability to make predictions of establishment success. Here, we acclimated individuals to a cold, medium or warm temperature regime and measured critical thermal limits, life-history traits, and starvation resistance of the globally invasive Harmonia axyridis and its native counterpart Cheilomenes lunata. The native C. lunata had higher thermal plasticity of starvation resistance and higher upper thermal tolerance than H. axyridis. By contrast, H. axyridis outperformed C. lunata in most life-history traits. We combined trait responses, transport duration and propagule pressure to simulate the final number of beetles established in the introduced site in cold, medium and warm scenarios, where beetles also experienced a heatwave once established. Although C. lunata initially outcompeted the invasive species during transport, more H. axyridis survived in all environments because of higher life-history trait responses, in particular, higher fecundity. Despite increased starvation mortality in the warm scenario, H. axyridis established successfully given sufficient propagule size. By contrast, in the event of a heatwave, H. axyridis numbers plummeted and higher numbers of the native species established in the cold scenario. This study underscores the importance of considering a combination of traits and respective cascading effects when estimating the establishment potential of species and responses to climate warming.


2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


Sign in / Sign up

Export Citation Format

Share Document