scholarly journals Direct nitrous oxide emissions from oilseed rape cropping – a meta‐analysis

GCB Bioenergy ◽  
2014 ◽  
Vol 7 (6) ◽  
pp. 1260-1271 ◽  
Author(s):  
Katja Walter ◽  
Axel Don ◽  
Roland Fuß ◽  
Jürgen Kern ◽  
Julia Drewer ◽  
...  
Pedosphere ◽  
2021 ◽  
Vol 31 (2) ◽  
pp. 231-242
Author(s):  
Garba ALIYU ◽  
Jiafa LUO ◽  
Hong J. DI ◽  
Deyan LIU ◽  
Junji YUAN ◽  
...  

ael ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 190024 ◽  
Author(s):  
Weiquan Luo ◽  
Peter L. O'Brien ◽  
Jerry L. Hatfield

Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 598 ◽  
Author(s):  
Peter Grace ◽  
Iurii Shcherbak ◽  
Ben Macdonald ◽  
Clemens Scheer ◽  
David Rowlings

As a significant user of nitrogen (N) fertilisers, the Australian cotton industry is a major source of soil-derived nitrous oxide (N2O) emissions. A country-specific (Tier 2) fertiliser-induced emission factor (EF) can be used in national greenhouse gas inventories or in the development of N2O emissions offset methodologies provided the EFs are evidence based. A meta-analysis was performed using eight individual N2O emission studies from Australian cotton studies to estimate EFs. Annual N2O emissions from cotton grown on Vertosols ranged from 0.59kgNha–1 in a 0N control to 1.94kgNha–1 in a treatment receiving 270kgNha–1. Seasonal N2O estimates ranged from 0.51kgNha–1 in a 0N control to 10.64kgNha–1 in response to the addition of 320kgNha–1. A two-component (linear+exponential) statistical model, namely EF (%)=0.29+0.007(e0.037N – 1)/N, capped at 300kgNha–1 describes the N2O emissions from lower N rates better than an exponential model and aligns with an EF of 0.55% using a traditional linear regression model.


2014 ◽  
Vol 69 (6) ◽  
pp. 471-482 ◽  
Author(s):  
A. D. Basche ◽  
F. E. Miguez ◽  
T. C. Kaspar ◽  
M. J. Castellano

2013 ◽  
Vol 19 (10) ◽  
pp. 2956-2964 ◽  
Author(s):  
Huaihai Chen ◽  
Xuechao Li ◽  
Feng Hu ◽  
Wei Shi

2022 ◽  
Vol 9 ◽  
Author(s):  
Sarah Köbke ◽  
Hongxing He ◽  
Matthias Böldt ◽  
Haitao Wang ◽  
Mehmet Senbayram ◽  
...  

Oilseed rape (Brassica napus L.) is an important bioenergy crop that contributes to the diversification of renewable energy supply and mitigation of fossil fuel CO2 emissions. Typical oilseed rape crop management includes the use of nitrogen (N) fertilizer and the incorporation of oilseed rape straw into soil after harvest. However, both management options risk increasing soil emissions of nitrous oxide (N2O). The aim of this 2-years field experiment was to identify the regulating factors of N cycling with emphasis on N2O emissions during the post-harvest period. As well as the N2O emission rates, soil ammonia (NH4+) and nitrate (NO3−) contents, crop residue and seed yield were also measured. Treatments included variation of fertilizer (non-fertilized, 90 and 180 kg N ha−1) and residue management (straw remaining, straw removal). Measured N2O emission data showed large intra- and inter-annual variations ranging from 0.5 (No-fert + str) to 1.0 kg N2O-N ha−1 (Fert-180 + str) in 2013 and from 4.1 (Fert-90 + str) to 7.3 kg N2O-N ha−1 (No-fert + str) in 2014. Cumulative N2O emissions showed that straw incorporation led to no difference or slightly reduced N2O emissions compared with treatments with straw removal, while N fertilization has no effect on post-harvest N2O emissions. A process-based model, CoupModel, was used to explain the large annual variation of N2O after calibration with measured environmental data. Both modeled and measured data suggest that soil water-filled pore space and temperature were the key factors controlling post-harvest N2O emissions, even though the model seemed to show a higher N2O response to the N fertilizer levels than our measured data. We conclude that straw incorporation in oilseed rape cropping is environmentally beneficial for mitigating N2O losses. The revealed importance of climate in regulating the emissions implies the value of multi-year measurements. Future studies should focus on new management practices to mitigate detrimental effects caused by global warming, for example by using cover crops.


2021 ◽  
pp. 108523
Author(s):  
Luncheng You ◽  
Gerard H. Ros ◽  
Yongliang Chen ◽  
Xue Yang ◽  
Zhenling Cui ◽  
...  

2017 ◽  
Vol 249 ◽  
pp. 57-69 ◽  
Author(s):  
Reiner Ruser ◽  
Roland Fuß ◽  
Monique Andres ◽  
Hannes Hegewald ◽  
Katharina Kesenheimer ◽  
...  

2013 ◽  
Vol 373 (1-2) ◽  
pp. 17-30 ◽  
Author(s):  
Dong-Gill Kim ◽  
Donna Giltrap ◽  
Guillermo Hernandez-Ramirez

Sign in / Sign up

Export Citation Format

Share Document