scholarly journals Climate Overrides Effects of Fertilizer and Straw Management as Controls of Nitrous Oxide Emissions After Oilseed Rape Harvest

2022 ◽  
Vol 9 ◽  
Author(s):  
Sarah Köbke ◽  
Hongxing He ◽  
Matthias Böldt ◽  
Haitao Wang ◽  
Mehmet Senbayram ◽  
...  

Oilseed rape (Brassica napus L.) is an important bioenergy crop that contributes to the diversification of renewable energy supply and mitigation of fossil fuel CO2 emissions. Typical oilseed rape crop management includes the use of nitrogen (N) fertilizer and the incorporation of oilseed rape straw into soil after harvest. However, both management options risk increasing soil emissions of nitrous oxide (N2O). The aim of this 2-years field experiment was to identify the regulating factors of N cycling with emphasis on N2O emissions during the post-harvest period. As well as the N2O emission rates, soil ammonia (NH4+) and nitrate (NO3−) contents, crop residue and seed yield were also measured. Treatments included variation of fertilizer (non-fertilized, 90 and 180 kg N ha−1) and residue management (straw remaining, straw removal). Measured N2O emission data showed large intra- and inter-annual variations ranging from 0.5 (No-fert + str) to 1.0 kg N2O-N ha−1 (Fert-180 + str) in 2013 and from 4.1 (Fert-90 + str) to 7.3 kg N2O-N ha−1 (No-fert + str) in 2014. Cumulative N2O emissions showed that straw incorporation led to no difference or slightly reduced N2O emissions compared with treatments with straw removal, while N fertilization has no effect on post-harvest N2O emissions. A process-based model, CoupModel, was used to explain the large annual variation of N2O after calibration with measured environmental data. Both modeled and measured data suggest that soil water-filled pore space and temperature were the key factors controlling post-harvest N2O emissions, even though the model seemed to show a higher N2O response to the N fertilizer levels than our measured data. We conclude that straw incorporation in oilseed rape cropping is environmentally beneficial for mitigating N2O losses. The revealed importance of climate in regulating the emissions implies the value of multi-year measurements. Future studies should focus on new management practices to mitigate detrimental effects caused by global warming, for example by using cover crops.

2019 ◽  
Vol 272 ◽  
pp. 165-174 ◽  
Author(s):  
Brian W. Davis ◽  
Steven B. Mirsky ◽  
Brian A. Needelman ◽  
Michel A. Cavigelli ◽  
Stephanie A. Yarwood

2013 ◽  
Vol 10 (3) ◽  
pp. 1787-1797 ◽  
Author(s):  
M. H. Jeuffroy ◽  
E. Baranger ◽  
B. Carrouée ◽  
E. de Chezelles ◽  
M. Gosme ◽  
...  

Abstract. Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas (GHG), originate from soils at a global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes can reduce N fertilizer use, and possibly N2O emissions. Nevertheless, the decomposition of crop organic matter during the crop cycle and residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed rape crops, fertilized or not, in various rotations. A field experiment was conducted over 4 consecutive years to compare the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly due to the site's soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after the pea crop. These results should be confirmed over a wider range of soil types. Nevertheless, they demonstrate the absence of N2O emissions linked to the symbiotic N fixation process, and allow us to estimate the decrease in N2O emissions by 20–25% through including one pea crop in a three-year rotation. On a larger scale, this reduction of GHG emissions at field level has to be added to the decrease due to the reduced production and transport of the N fertilizer not applied to the pea crop.


2014 ◽  
Vol 69 (6) ◽  
pp. 471-482 ◽  
Author(s):  
A. D. Basche ◽  
F. E. Miguez ◽  
T. C. Kaspar ◽  
M. J. Castellano

2009 ◽  
Vol 106 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Juliana Gomes ◽  
Cimélio Bayer ◽  
Falberni de Souza Costa ◽  
Marisa de Cássia Piccolo ◽  
Josiléia Acordi Zanatta ◽  
...  

2020 ◽  
Vol 266 ◽  
pp. 115292
Author(s):  
Lei Wu ◽  
Ronggui Hu ◽  
Shuirong Tang ◽  
Muhammad Shaaban ◽  
Wenju Zhang ◽  
...  

Soil Research ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 60
Author(s):  
P. Quin ◽  
N. Swarts ◽  
G. Oliver ◽  
S. Paterson ◽  
J. Friedl ◽  
...  

The application of nitrate (NO3–) fertiliser is important worldwide in providing nitrogen (N) nutrition to perennial fruit trees. There is little information available on N losses to the environment from commercial cherry orchards, in relation to different timings of NO3– application. The emission of nitrous oxide (N2O) gas is an important greenhouse gas loss from NO3– application, being responsible for 6% of anthropogenic global warming and a catalyst for depletion of stratospheric ozone. In a commercial sweet-cherry orchard in southern Tasmania, we applied 373 g NO3–-N m–2 (equivalent to 90 kg NO3–-N ha–1) either pre- or post-harvest, or equally split between the two, to study the resultant N2O emissions. Emissions averaged 8.37 mg N2O-N m–2 day–1 during the pre-harvest period, primarily driven by a heavy rainfall event, and were significantly greater (P < 0.05) than the average 4.88 × 10–1 mg N2O-N m–2 day–1 from post-harvest NO3– application. Discounting the emissions related to the rainfall event, the resultant average 1.88 mg N2O-N m–2 day–1 for the rest of the pre-harvest emissions remained significantly greater (P < 0.05) than those post-harvest. Ongoing studies will help to build on these results and efforts to minimise N2O emissions in perennial tree cropping systems.


Author(s):  
Inderjot Chahal ◽  
Khagendra R. Baral ◽  
Kate A. Congreves ◽  
Laura L. Van Eerd ◽  
C. Wagner-Riddle

Horticultural systems, specifically vegetable production systems, are considered intensive agricultural systems as they are characterized by high nitrogen (N) fertilizer application rate, frequent tillage and irrigation operations. Accordingly, horticultural production in temperate climates is prone to N losses—mainly during post-harvest (during fall and winter) or pre-plant (spring) periods—such as N2O emissions and nitrate leaching. The risk for N losses is linked to low crop N use efficiency (NUE) combined with a narrow C:N and high N content of crop residues. Here we reviewed the studies conducted in Canada and similar climates to better understand the risk of N2O emission and potential agronomic management strategies to reduce N2O emissions from horticultural systems. Current knowledge on N2O emissions from horticultural systems indicate that increasing crop NUE, modifying the amount, type, time, and rate of N fertilizer inputs, and adopting cover crops in crop rotations are some of the effective approaches to decrease N2O emissions. However, there is uncertainty related to the efficiency of the existing N2O mitigation strategies due to the complex interactions between the factors (soil characteristics, type of plant species, climatic conditions, and soil microbial activity) responsible for N2O production from soil. Little research on N2O emissions from Canadian horticultural systems limits our ability to understand and manage the soil N2O production processes to mitigate the risk of N2O emissions. Thus, continuing to expand this line of research will help to advance the sustainability of Canadian horticultural cropping systems.


Sign in / Sign up

Export Citation Format

Share Document