Microstructure and Cell Performance of NiO-YSZ Composite Anode-Supported Solid Oxide Fuel Cells Using Graphite as Anode Pore-Former: Effects of Graphite Particle Size and HNO3Treatment

2014 ◽  
Vol 12 (4) ◽  
pp. 823-829 ◽  
Author(s):  
Rujie He ◽  
Daining Fang ◽  
Feng He ◽  
Yefan Wu
2013 ◽  
Vol 51 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Sun-Min Park ◽  
Hae-Ran Cho ◽  
Byung-Hyun Choi ◽  
Yong-Tae An ◽  
Ja-Bin Koo ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7-14
Author(s):  
Cheng Cheng Wang ◽  
Mortaza Gholizadeh ◽  
Bingxue Hou ◽  
Xincan Fan

Strontium segregation in a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) electrode reacts with Cr and S in a solid oxide fuel cell (SOFC), which can cause cell performance deterioration.


2020 ◽  
Vol 46 (3) ◽  
pp. 3082-3090 ◽  
Author(s):  
Nicharee Wongsawatgul ◽  
Jinda Yeyongchaiwat ◽  
Rojana Pornprasertsuk ◽  
Sato Kazunori ◽  
Soamwadee Chaianansutcharit

2006 ◽  
Vol 972 ◽  
Author(s):  
Melanie Kuhn ◽  
Teko Napporn ◽  
Michel Meunier ◽  
Daniel Therriault ◽  
Srikar Vengallatore

AbstractMiniaturized single-chamber solid-oxide fuel cells (SC-SOFC) are a promising class of devices for portable power generation required in the operation of distributed networks of microelectromechanical systems (MEMS) in harsh environments. The single-face configuration, which consists of interdigitated (comb-like) array of electrodes on an yttria-stabilized zirconia (YSZ) electrolyte substrate, is of particular interest because of the ease of high-temperature microfluidic packaging and integration with MEMS. The primary design consideration for this configuration is the minimization of electrode widths and inter-electrode spacings to dimensions on the order of a few micrometers. This is necessary to minimize polarization resistance and increase fuel cell efficiency. Achieving these geometries using standard microfabrication methods is difficult because of the thickness, porosity, and complex chemistries of the electrodes. Here, we report the development of an innovative and rapid method for manufacturing SC-SOFCs with interdigitated electrodes using robot-controlled direct-writing. The main steps consist of: (i) formation of inks (or suspensions) using anode (NiO-YSZ) and cathode (lanthanum strontium manganite) powders, (ii) pressure-driven extrusion of inks through a micronozzle using a robot-controlled platform, and (iii) sequential sintering to form the fuel cell. The first-generation SC-SOFC device, with electrode widths of 130 μm and inter-electrode spacing of 300 μm, has been manufactured using direct-write microfabrication. The electrodes have been extensively characterized using electron microscopy and x-ray diffraction to assess porosity and to confirm phase identity. The primary process parameters in this approach are the particle size and size distribution, rheological properties of the suspension, extrusion pressure, nozzle size, stage velocity, and sintering conditions. As the first step in the development of detailed process-structure-performance correlations for the fuel cells, we have studied the effects of extrusion pressure (in the range 30-40 bar) and stage velocity (in the range 0.2-2.0 mm/s) on the geometry and size of electrodes, for fixed suspension viscosity and nozzle diameter. An optimal combination of speed and pressure has been identified and catalogued in the form of process maps. Similarly, the particle size distribution of the anode and cathode powders is found to have a significant effect on the microstructure, especially porosity, of the sintered electrodes. The implications of these results for the design of the next generation of SC-SOFC, with reduced electrode dimensions and improved electrochemical performance, will be discussed.


2019 ◽  
Vol 327 ◽  
pp. 220-225 ◽  
Author(s):  
Tian Gan ◽  
Guochang Ding ◽  
Xiaojing Zhi ◽  
Lijun Fan ◽  
Nianjun Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document