direct write
Recently Published Documents


TOTAL DOCUMENTS

1245
(FIVE YEARS 110)

H-INDEX

62
(FIVE YEARS 5)

2022 ◽  
pp. 1-48
Author(s):  
Yijie Liu ◽  
Zhen Zhang

Abstract Electron beam lithography (EBL) is an important lithographic process of scanning a focused electron beam (e-beam) to direct write a custom pattern with nanometric accuracy. Due to the very limited field of the focused election beam, a motion stage is needed to move the sample to the e-beam field for processing large patterns. In order to eliminate the stitching error induced by the existing “step and scan” process, we in this paper propose a large range compliant nano-manipulator so that the manipulator and the election beam can be moved in a simultaneous manner. We also present an optimization design for the geometric parameters of the compliant manipulator under the vacuum environment. Experimental results demonstrate 1 mm × 1 mm travel range with high linearity, ~ 0.5% cross-axis error and 5 nm resolution. Moreover, the high natural frequency (~ 56 Hz) of the manipulator facilitates it to achieve high-precision motion of EBL.



2022 ◽  
Author(s):  
Alba Salvador-Porroche ◽  
Lucia Herrer ◽  
Soraya Sangiao ◽  
Jose Maria de Teresa ◽  
Pilar Cea

Abstract The ability to create metallic patterned nanostructures with excellent control of size, shape and spatial orientation is of utmost importance in the construction of next-generation electronic and optical devices as well as in other applications such as (bio)sensors, reactive surfaces for catalysis, etc. Moreover, development of simple, rapid and low-cost fabrication processes of metallic patterned nanostructures is a challenging issue for the incorporation of such devices in real market applications. In this contribution, a direct-write method that results in highly conducting palladium-based nanopatterned structures without the need of applying subsequent curing processes is presented. Spin-coated films of palladium acetate were irradiated with an electron beam to produce palladium nanodeposits (PdNDs) with controlled size, shape and height. The use of different electron doses was investigated and its influence on the PdNDs features determined, namely: (1) thickness of the deposits, (2) atomic percentage of palladium content, (3) oxidation state of palladium in the deposit, (4) morphology of the sample and grain size of the Pd nanocrystals and (5) resistivity. It has been probed that the use of high electron doses, 30000 μC·cm-2 results in the lowest resistivity reported to date for PdNDs, namely 145.1 μΩ·cm, which is only one order of magnitude higher than metallic palladium. This result paves the way for development of simplified lithography processes of nanostructured deposits avoiding subsequent post-treatment steps.



Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 577
Author(s):  
Diana Gonzalez-Hernandez ◽  
Simonas Varapnickas ◽  
Greta Merkininkaitė ◽  
Arūnas Čiburys ◽  
Darius Gailevičius ◽  
...  

A pilot study on laser 3D printing of inorganic free-form micro-optics is experimentally validated. Ultrafast laser direct-write (LDW) nanolithography is employed for structuring hybrid organic-inorganic material SZ2080TM followed by high-temperature calcination post-processing. The combination allows the production of 3D architectures and the heat-treatment results in converting the material to inorganic substances. The produced miniature optical elements are characterized and their optical performance is demonstrated. Finally, the concept is validated for manufacturing compound optical components such as stacked lenses. This is an opening for new directions and applications of laser-made micro-optics under harsh conditions such as high intensity radiation, temperature, acidic environment, pressure variations, which include open space, astrophotonics, and remote sensing.



2021 ◽  
Vol 28 ◽  
pp. 100937 ◽  
Author(s):  
Pengyu Zhou ◽  
Xiongbin Yang ◽  
Yiyin Su ◽  
Jianwei Yang ◽  
Lei Xu ◽  
...  


Author(s):  
Joana Baltazar ◽  
Manuel Fellipe Rodrigues Pais Alves ◽  
Manuel A. Martins ◽  
Paula M.C. Torres ◽  
Claudinei Santos ◽  
...  


Author(s):  
Tanmay Jain ◽  
Yen-Ming Tseng ◽  
Chinnapatch Tantisuwanno ◽  
Joshua Menefee ◽  
Aida Shahrokhian ◽  
...  
Keyword(s):  


2021 ◽  
Vol 130 (17) ◽  
pp. 170901
Author(s):  
Michael Huth ◽  
Fabrizio Porrati ◽  
Sven Barth
Keyword(s):  


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Jinesh Narangaparambil ◽  
Scott Miller

Abstract The increased versatility in the design and manufacturing of components in low volumes, as well as the shorter time between design and prototype, has increased interest in the field of additively printed electronics. The ability to directly print on a variety of substrates, whether rigid, flexible, or conformable, provides several benefits over conventional electronics fabrication methods. Furthermore, the growing complexity of flexible electronics necessitates the development of multilayered circuits similar to traditional PCBs to decrease the volumetric and gravimetric effect of the underlying electronics. Using z-axis interconnections with dielectric materials, which may allow or prevent the connection between two layers, is one method of reaching several layers of circuits. In this paper, a working multilayer circuitry test vehicle is designed and additively printed using the direct-write method. The circuit model involves conductive and dielectric ink printing, as well as passive and active component attachments using an electrically conductive adhesive (ECA) and low-temperature solder (LTS). The study also shows details about the process of developing dielectric printing parameters for microvias for multilayer z-axis interconnections.



2021 ◽  
Author(s):  
Pradeep Lall ◽  
Tony Thomas ◽  
Jinesh Narangaparambil

Abstract Applications of printed sensors have increased to industrial, consumer electronics, and medical fields with the advancements in the technology of printing and the adaptability of ink. These sensors are used to monitor a variety of measurements, including temperature, humidity, strain, and sweat, with different systems. This paper studies the performance characteristics of additively printed strain sensors using a nScrypt machine with a direct-write printing technique. The ink used in this study is silver ink which is thermally cured and also has a solderable property. The thermal curing temperature and trace width of the printed silver trace is optimized for better performance in the strain measurements, shear load to failure, and resistivity. Once the printing characteristics of the trace are defined, strain gauges are printed on printed wiring boards (PWB) and are tested at different loading and temperature environments. The sustainability and repeatability of the sensor measurements at high-stress conditions are studied using combined temperature and vibration loads of up to 50 degrees Celsius and 10g acceleration levels. The strain characteristics of the printed strain gauges are studied by comparing them to a commercial strain gauge at a similar position on the test substrate. The repeatability and variation of the strain profile are studied with different conditions of temperature and acceleration conditions at different time instants during vibration. The gauge factor of the printed strain gauge is quantified using a 3-point bending experiment with printed and commercial strain gauges at symmetrical locations of the substrate.



2021 ◽  
Author(s):  
Pradeep Lall ◽  
Hyesoo Jang ◽  
Jinesh Narangaparambil ◽  
Kartik Goyal ◽  
Curtis Hill

Abstract The flexible sensor has the capability to be mounted on any curved surfaces of applications and be used for portable devices. Additively printed sensors have received attention owing to their compact design and ability of application to non-planar surfaces. Wearable applications require capability of integration into a variety of surfaces with ability to flex, fold, twist and stretch under the stresses of daily motion. There is scarcity of data on the interaction of the process parameters with the realized performance. In addition, there is need for data focused on sensor accuracy, repeatability, and reliability. In this study, experimental analysis on function of the fabricated sensing board is conducted. The temperature sensors are made by direct write printing method with nScrypt printer. A calibration of the sensors has been conducted to confirm that resistance is well related to actual temperature and find TCR (temperature coefficient to resistance). The evolution of resistance has been correlated with the environmental temperature. The sensor hysteresis has been quantified using upswing and downswing of the environmental temperature. In addition, the effect of humidity on the temperature sensor accuracy and performance has been quantified. The effect of a polymide coat on the sensor to prevent humidity effects has also been quantified.



Sign in / Sign up

Export Citation Format

Share Document