Isoflurane applied during ischemia enhances intracellular calcium accumulation in ventricular myocytes in part by reactive oxygen species

2004 ◽  
Vol 48 (6) ◽  
pp. 716-721 ◽  
Author(s):  
M. Dworschak ◽  
D. Breukelmann ◽  
J. D. Hannon
2004 ◽  
Vol 30 (5) ◽  
pp. 683-692 ◽  
Author(s):  
Hidemi Honda ◽  
Takashi Kondo ◽  
Qing-Li Zhao ◽  
Loreto B Feril ◽  
Hiroshi Kitagawa

2015 ◽  
Vol 4 (6) ◽  
pp. 1613-1622 ◽  
Author(s):  
Tianshu Wu ◽  
Keyu He ◽  
Qinglin Zhan ◽  
Shengjun Ang ◽  
Jiali Ying ◽  
...  

CdTe QD exposure caused death and apoptosis of rat primary cultured hippocampal neurons via generating reactive oxygen species and increasing intracellular calcium levels, which could be reversed by a common antioxidant NAC.


2004 ◽  
Vol 100 (3) ◽  
pp. 575-580 ◽  
Author(s):  
Jianzhong An ◽  
Anna Stadnicka ◽  
Wai-Meng Kwok ◽  
Zeljko J. Bosnjak

Background Myocardial protection by volatile anesthetics involves activation of cardiac adenosine triphosphate-sensitive potassium (K(ATP)) channels. The authors have previously shown that isoflurane enhances sensitivity of the sarcolemmal K(ATP) channel to the opener, pinacidil. Because reactive oxygen species seem to be mediators in anesthetic preconditioning, the authors investigated whether they contribute to the mechanism of the sensitization effect by isoflurane. Methods Ventricular myocytes were isolated from guinea pig hearts for the whole cell patch clamp recordings of the sarcolemmal K(ATP) channel current (I(KAPT)). Free radical scavengers N-acetyl-L-cysteine, carnosine, superoxide dismutase, and catalase were used to investigate whether reactive oxygen species mediate isoflurane facilitation of the channel opening by pinacidil. A possible role of the mitochondrial K(ATP) channels was tested using a blocker of these channels, 5-hydroxydecanoate. Results The mean density (+/- SEM) of I(KAPT) elicited by pinacidil (20 microM) was 18.9 +/- 1.8 pA/pF (n = 11). In the presence of isoflurane (0.55 mM), the density of pinacidil-activated I(KAPT) increased to 38.5 +/- 2.4 pA/pF (n = 9). Concurrent application of isoflurane and N-acetyl-L-cysteine decreased the sensitization effect by isoflurane in a concentration-dependent manner, whereby the densities of I(KAPT) were 32.6 +/- 1.4 (n = 6), 26.2 +/- 2.3 (n = 6), and 19.4 +/- 2.1 pA/pF (n = 8) at 100, 250, and 500 microM N-acetyl-L-cysteine, respectively. Concurrent application of isoflurane and carnosine (100 microM), superoxide dismutase (100 U/ml), or catalase (100 U/ml) attenuated the densities of I(KAPT) to 27.9 +/- 2.6, 27.2 +/- 2.9, and 25.9 +/- 2.2 pA/pF, respectively. None of the scavengers affected activation of I(KAPT) by pinacidil alone. 5-Hydroxydecanoate (100 microM) did not alter the sensitization effect by isoflurane, and the density of I(KAPT) in this group was 37.1 +/- 3.8 pA/pF (n= 6). Conclusion These results suggest that reactive oxygen species contribute to the mechanism by which isoflurane sensitizes the cardiac sarcolemmal K(ATP) channel to the opener, pinacidil.


Sign in / Sign up

Export Citation Format

Share Document