catalase inhibition
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 5)

H-INDEX

16
(FIVE YEARS 3)

Genetics ◽  
2021 ◽  
Author(s):  
Pooja Agashe ◽  
Andrei Kuzminov

Abstract Hydrogen peroxide (H2O2, HP) is a universal toxin that organisms deploy to kill competing or invading cells. Bactericidal action of H2O2 presents several questions. First, the lethal H2O2 concentrations in bacterial cultures are 1000x higher than, for example, those calculated for the phagosome. Second, H2O2-alone kills bacteria in cultures either by mode-one, via iron-mediated chromosomal damage, or by mode-two, via unknown targets, but the killing mode in phagosomes is unclear. Third, phagosomal H2O2 toxicity is enhanced by production of nitric oxide (NO), but in vitro studies disagree: some show NO synergy with H2O2 antimicrobial action, others instead report alleviation. To investigate this “NO paradox,” we treated Escherichia coli with various concentrations of H2O2-alone or H2O2+NO, measuring survival and chromosome stability. We found that all NO concentrations make sublethal H2O2 treatments highly lethal, via triggering catastrophic chromosome fragmentation (mode-one killing). Yet, NO-alone is not lethal, potentiating H2O2 toxicity by blocking H2O2 scavenging in cultures. Catalases represent obvious targets of NO inhibition, and catalase-deficient mutants are indeed killed equally by H2O2-alone or H2O2+NO treatments, also showing similar levels of chromosome fragmentation. Interestingly, iron chelation blocks chromosome fragmentation in catalase-deficient mutants without blocking H2O2-alone lethality, indicating mode-two killing. In fact, mode-two killing of WT cells by much higher H2O2 concentrations is transiently alleviated by NO, reproducing the “NO paradox.” We conclude that NO potentiates H2O2 toxicity by promoting mode-one killing (via catastrophic chromosome fragmentation) by otherwise static low H2O2 concentrations, while transiently suppressing mode-two killing by immediately lethal high H2O2 concentrations.


2020 ◽  
Vol 132 (1) ◽  
Author(s):  
NAHIDE GULSAH DENIZ ◽  
AESHA F SH ABDASSALAM ◽  
MUSTAFA OZYUREK ◽  
EMIN AHMET YESIL ◽  
CIGDEM SAYIL

Author(s):  
Francisco J. Corpas ◽  
Juan B. Barroso ◽  
Salvador González‐Gordo ◽  
María A. Muñoz‐Vargas ◽  
José M. Palma

2019 ◽  
Vol 38 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Rianita van Onselen ◽  
Tim G. Downing

The naturally produced, nonprotein amino acid β- N-methylamino-l-alanine (BMAA) has been proposed as a significant contributor to sporadic neurodegenerative disease development worldwide. However, the existing hypothesized mechanisms of toxicity do not adequately explain the role of BMAA in neurodegenerative disease development. There is evidence for BMAA-induced enzyme inhibition, but the effect of BMAA on human stress response enzymes has received little attention, despite the well-described role of oxidative stress in neurodegenerative disease development. The aim of this study was therefore to investigate the effect of BMAA on human catalase activity and compare it to the known inhibitor 3-amino-1,2,4-triazole. BMAA inhibited human erythrocyte catalase in a cell-free exposure to the same extent as the known inhibitor. Based on enzyme kinetics, the inhibition appears to be noncompetitive, possibly as a result of BMAA binding in the nicotinamide adenine dinucleotide phosphate (NADPH) binding site. BMAA-induced catalase inhibition was also observed in a human cell line culture. We therefore propose that BMAA-induced enzyme inhibition, specifically catalase inhibition, is a mechanism of toxicity that may contribute to the neurotoxicity of BMAA, further supporting the role of BMAA in neurodegenerative disease development.


2018 ◽  
Vol 501 (3) ◽  
pp. 696-702 ◽  
Author(s):  
Joon No Lee ◽  
Raghbendra Kumar Dutta ◽  
Yunash Maharjan ◽  
Zhi-qiang Liu ◽  
Jae-Young Lim ◽  
...  

2018 ◽  
Vol 469 ◽  
pp. 495-502 ◽  
Author(s):  
Songül Eğlence ◽  
Musa Şahin ◽  
Mustafa Özyürek ◽  
Reşat Apak ◽  
Bahri Ülküseven

2017 ◽  
Vol 313 (4) ◽  
pp. R340-R346 ◽  
Author(s):  
Kenneth R. Olson ◽  
Yan Gao ◽  
Faihaan Arif ◽  
Kanika Arora ◽  
Shivali Patel ◽  
...  

Fluorescence spectroscopy and microscopy have been used extensively to monitor biomolecules, especially reactive oxygen species (ROS) and, more recently, reactive sulfide (RSS) species. Nearly all fluorophores are either excited by or emit light between 450 and 550 nm, which is similar to the absorbance of heme proteins and metal-centered porphyrins. Here we examined the effects of catalase (Cat), reduced and oxidized hemoglobin (Hb and metHb), albumin (alb), manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP), iron protoporphyrin IX (hemin), and copper protoporphyrin IX (CuPPIX) on the fluorescence properties of fluorescein. We also examined the effects of catalase and MnTBAP on fluorophores for ROS (dichlorofluorescein, DCF), polysulfides (3′,6′-di( O-thiosalicyl)fluorescein, SSP4), and H2S (7-azido-4-methylcoumarin, AzMC) previously activated by H2O2, a mixed polysulfide (H2Sn, n = 1–7) and H2S, respectively. All except albumin concentration dependently inhibited fluorophore fluorescence and absorbed light between 450 and 550 nm, suggesting that the inhibitory effect was physical not catalytic. Catalase inhibition of fluorescein fluorescence was unaffected by sodium azide, dithiothreitol, diamide, tris(2-carboxyethyl)phosphine (TCEP), or iodoacetate, supporting a physical inhibitory mechanism. Catalase and TBAP augmented, then inhibited DCF fluorescence, but only inhibited SSP4 and AzMC fluorescence indicative of a substrate-specific catalytic oxidation of DCF and nonspecific fluorescence inhibition of all three fluorophores. These results suggest caution must be exercised when using any fluorescent tracers in the vicinity of metal-centered porphyrins.


Sign in / Sign up

Export Citation Format

Share Document