scholarly journals Thermal plasticity of metabolic rates linked to life-history traits and foraging behaviour in a parasitic wasp

2010 ◽  
Vol 25 (3) ◽  
pp. 641-651 ◽  
Author(s):  
Cécile Le Lann ◽  
Thomas Wardziak ◽  
Joan van Baaren ◽  
Jacques J. M. van Alphen
Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 852
Author(s):  
Mey Jerbi-Elayed ◽  
Vincent Foray ◽  
Kévin Tougeron ◽  
Kaouthar Grissa-Lebdi ◽  
Thierry Hance

Developmental temperature plays important roles in the expression of insect traits through thermal developmental plasticity. We exposed the aphid parasitoid Aphidius colemani to different temperature regimes (10, 20, or 28 °C) throughout larval development and studied the expression of morphological and physiological traits indicator of fitness and heat tolerance in the adult. We showed that the mass decreased and the surface to volume ratio of parasitoids increased with the development temperature. Water content was not affected by rearing temperature, but parasitoids accumulated more lipids when reared at 20 °C. Egg content was not affected by developmental temperature, but adult survival was better for parasitoids reared at 20 °C. Finally, parasitoids developed at 20 °C showed the highest heat stupor threshold, whereas parasitoids developed at 28 °C showed the highest heat coma threshold (better heat tolerance CTmax1 and CTmax2, respectively), therefore only partly supporting the beneficial acclimation hypothesis. From a fundamental point of view, our study highlights the role of thermal plasticity (adaptive or not) on the expression of different life history traits in insects and the possible correlations that exist between these traits. From an applied perspective, these results are important in the context of biological control through mass release techniques of parasitoids in hot environments.


2021 ◽  
Author(s):  
Ingrid Ané Minnaar ◽  
Cang Hui ◽  
Susana Clusella-Trullas

Abstract The plasticity of performance traits is expected to promote the successful invasion of species. Therefore, the comparison of reaction norms of invasive species with native competitors should enhance predictions of alien species establishment. Yet, most studies focus on a reduced set of traits, rarely in combination, or do not include trait variability to make predictions of establishment success. Here, we acclimated individuals to a cold, medium or warm temperature regime and measured critical thermal limits, life-history traits, and starvation resistance of the globally invasive Harmonia axyridis and its native counterpart Cheilomenes lunata. The native C. lunata had higher thermal plasticity of starvation resistance and higher upper thermal tolerance than H. axyridis. By contrast, H. axyridis outperformed C. lunata in most life-history traits. We combined trait responses, transport duration and propagule pressure to simulate the final number of beetles established in the introduced site in cold, medium and warm scenarios, where beetles also experienced a heatwave once established. Although C. lunata initially outcompeted the invasive species during transport, more H. axyridis survived in all environments because of higher life-history trait responses, in particular, higher fecundity. Despite increased starvation mortality in the warm scenario, H. axyridis established successfully given sufficient propagule size. By contrast, in the event of a heatwave, H. axyridis numbers plummeted and higher numbers of the native species established in the cold scenario. This study underscores the importance of considering a combination of traits and respective cascading effects when estimating the establishment potential of species and responses to climate warming.


2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


Sign in / Sign up

Export Citation Format

Share Document