scholarly journals Deep seismic reflection evidence for the role of extension in the evolution of continental crust

1987 ◽  
Vol 89 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Laura Serpa ◽  
Beatrice Voogd
Geology ◽  
1987 ◽  
Vol 15 (4) ◽  
pp. 304 ◽  
Author(s):  
R. W. Allmendinger ◽  
K. D. Nelson ◽  
C. J. Potter ◽  
M. Barazangi ◽  
L D. Brown ◽  
...  

1991 ◽  
Vol 28 (7) ◽  
pp. 1112-1120 ◽  
Author(s):  
C. E. Keen ◽  
B. C. MacLean ◽  
W. A. Kay

Results from two deep seismic reflection lines are presented. When combined, these lines span the rifted continental margin off Nova Scotia, from crust unaltered by rifting to the ocean basin. These data provide crustal and upper mantle reflection geometry to depths of over 50 km and elucidate the rifting process on this margin which occurred during the Mesozoic breakup of Pangaea. The continental crust below the continental shelf and slope becomes progressively thinner toward the ocean–continent boundary. In the upper crust, normal faults accommodated Mesozoic extension, and these flatten and terminate at 5–6 s (two-way time). In the lower crust and upper mantle Mesozoic rifting may be reflected in dipping events, which are interpreted to be normal faults. All Mesozoic extensional faulting could be controlled by the preexisting fabric of the crust, which in this region would be related to Appalachian compression within the Meguma Terrane. Below the continental rise, there is some evidence for magmatic underplating of the thinned continental crust, but the presence of synrift diapiric salt prevents clear definition of deeper structure. The extreme seaward end of the profile lies in a region interpreted in most other, earlier studies to be oceanic in nature. However, the seismic profile described here shows that relief on basement is associated with listric normal faults, which flatten in decollement, and that linear, landward-dipping intrabasement reflections characterize the area. These features can be explained in either a continental or an oceanic context.


Author(s):  
Clark M. Johnson ◽  
Steven B. Shirey ◽  
Karin M. Barovich

ABSTRACT:The Lu-Hf and Re-Os isotope systems have been applied sparsely to elucidate the origin of granites, intracrustal processes and the evolution of the continental crust. The presence or absence of garnet as a residual phase during partial melting will strongly influence Lu/Hf partitioning, making the Lu–Hf isotope system exceptionally sensitive to evaluating the role of garnet during intracrustal differentiation processes. Mid-Proterozoic (1·1–1·5Ga ) ‘anorogenic’ granites from the western U.S.A. appear to have anomalously high εHf values, relative to their εNd values, compared with Precambrian orogenic granites from several continents. The Hf-Nd isotope variations for Precambrian orogenic granites are well explained by melting processes that are ultimately tied to garnet-bearing sources in the mantle or crust. Residual, garnet-bearing lower and middle crust will evolve to anomalously high εHf values over time and may be the most likely source for later ‘anorogenic’ magmas. When crustal and mantle rocks are viewed together in terms of Hf and Nd isotope compositions, a remarkable mass balance is apparent for at least the outer silicate earth where Precambrian orogenic continental crust is the balance to the high-εHf depleted mantle, and enriched lithospheric mantle is the balance to the low-εHf depleted mantle.Although the continental crust has been envisioned to have exceptionally high Re/Os ratios and very radiogenic Os isotope compositions, new data obtained on magnetite mineral separates suggest that some parts of the Precambrian continental crust are relatively Os-rich and non-radiogenic. It remains unclear how continental crust may obtain non-radiogenic Os isotope ratios, and these results have important implications for Re-Os isotope evolution models. In contrast, Phanerozoic batholiths and volcanic arcs that are built on young mafic lower crust may have exceptionally radiogenic Os isotope ratios. These results highlight the unique ability of Os isotopes to identify young mafic crustal components in orogenic magmas that are essentially undetectable using other isotope systems such as O, Sr, Nd and Pb.


Sign in / Sign up

Export Citation Format

Share Document