Centrifugation of bacterial cells on slide surface improves the spatial distribution, cell recovery and reduces the time of enumeration for fluorescence in situ hybridization

2007 ◽  
Vol 227 (1) ◽  
pp. 8-14
Author(s):  
PAWEL NAMSOLLECK ◽  
RUCHIKA MOHAN ◽  
CORINNA KOEBNICK ◽  
MICHAEL BLAUT
2015 ◽  
Vol 61 (6) ◽  
pp. 417-428 ◽  
Author(s):  
Edith R. Valle ◽  
Gemma Henderson ◽  
Peter H. Janssen ◽  
Faith Cox ◽  
Trevor W. Alexander ◽  
...  

In this study, methanogen-specific coenzyme F420autofluorescence and confocal laser scanning microscopy were used to identify rumen methanogens and define their spatial distribution in free-living, biofilm-, and protozoa-associated microenvironments. Fluorescence in situ hybridization (FISH) with temperature-controlled hybridization was used in an attempt to describe methanogen diversity. A heat pretreatment (65 °C, 1 h) was found to be a noninvasive method to increase probe access to methanogen RNA targets. Despite efforts to optimize FISH, 16S rRNA methanogen-specific probes, including Arch915, bound to some cells that lacked F420, possibly identifying uncharacterized Methanomassiliicoccales or reflecting nonspecific binding to other members of the rumen bacterial community. A probe targeting RNA from the methanogenesis-specific methyl coenzyme M reductase (mcr) gene was shown to detect cultured Methanosarcina cells with signal intensities comparable to those of 16S rRNA probes. However, the probe failed to hybridize with the majority of F420-emitting rumen methanogens, possibly because of differences in cell wall permeability among methanogen species. Methanogens were shown to integrate into microbial biofilms and to exist as ecto- and endosymbionts with rumen protozoa. Characterizing rumen methanogens and defining their spatial distribution may provide insight into mitigation strategies for ruminal methanogenesis.


2002 ◽  
Vol 68 (6) ◽  
pp. 3094-3101 ◽  
Author(s):  
Annelie Pernthaler ◽  
Jakob Pernthaler ◽  
Rudolf Amann

ABSTRACT Fluorescence in situ hybridization (FISH) with horseradish peroxidase (HRP)-labeled oligonucleotide probes and tyramide signal amplification, also known as catalyzed reporter deposition (CARD), is currently not generally applicable to heterotrophic bacteria in marine samples. Penetration of the HRP molecule into bacterial cells requires permeabilization procedures that cause high and most probably species-selective cell loss. Here we present an improved protocol for CARD-FISH of marine planktonic and benthic microbial assemblages. After concentration of samples onto membrane filters and subsequent embedding of filters in low-gelling-point agarose, no decrease in bacterial cell numbers was observed during 90 min of lysozyme incubation (10 mg ml−1 at 37°C). The detection rates of coastal North Sea bacterioplankton by CARD-FISH with a general bacterial probe (EUB338-HRP) were significantly higher (mean, 94% of total cell counts; range, 85 to 100%) than that with a monolabeled probe (EUB338-mono; mean, 48%; range, 19 to 66%). Virtually no unspecific staining was observed after CARD-FISH with an antisense EUB338-HRP. Members of the marine SAR86 clade were undetectable by FISH with a monolabeled probe; however, a substantial population was visualized by CARD-FISH (mean, 7%; range, 3 to 13%). Detection rates of EUB338-HRP in Wadden Sea sediments (mean, 81%; range, 53 to 100%) were almost twice as high as the detection rates of EUB338-mono (mean, 44%; range, 25 to 71%). The enhanced fluorescence intensities and signal-to-background ratios make CARD-FISH superior to FISH with directly labeled oligonucleotides for the staining of bacteria with low rRNA content in the marine environment.


BioTechniques ◽  
2005 ◽  
Vol 39 (6) ◽  
pp. 864-868 ◽  
Author(s):  
Kirstine Klitgaard ◽  
Lars Mølbak ◽  
Tim K. Jensen ◽  
Christian Fredrik Lindboe ◽  
Mette Boye

2012 ◽  
Vol 65 (2) ◽  
pp. 289-295 ◽  
Author(s):  
Ahlem Filali ◽  
Yolaine Bessiere ◽  
Mathieu Sperandio

The aim of the work was to quantify the influence of the simultaneous presence of flocs and granules in the nitrifying activity in a sequencing batch airlift reactor (SBAR). The nitrification rate and oxygen limitation of flocs, granules and hybrid sludge was investigated using respirometric assays at different dissolved oxygen concentrations. The spatial distribution of Ammonium Oxidizing Bacteria (AOB) and Nitrite Oxidizing Bacteria (NOB) was investigated using fluorescence in situ hybridization (FISH). Results showed that the nitrification rate was much less sensitive to oxygen limitation in systems containing a fraction of flocs than in pure granular sludge. Ammonium Oxidizing Bacteria (AOB) were found to be distributed in similar quantities in flocs and granules whereas the Nitrite Oxidizing Bacteria (NOB) were located preferentially in granules. This study showed that the presence of flocs with granules could increase the robustness of the process to transitory reductions of aeration.


2007 ◽  
Vol 5 (11) ◽  
pp. 379-383 ◽  
Author(s):  
Kimberley F. Keats ◽  
Richard B. Rivkin ◽  
Michelle S. Hale ◽  
David C. Schneider

Sign in / Sign up

Export Citation Format

Share Document