Three-dimensional reconstruction of the guinea pig inner ear, comparison of OPFOS and light microscopy, applications of 3D reconstruction

2009 ◽  
Vol 233 (2) ◽  
pp. 251-257 ◽  
Author(s):  
R. HOFMAN ◽  
J.M. SEGENHOUT ◽  
H.P. WIT
Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 4001 ◽  
Author(s):  
Shuhe Chang ◽  
Haoyu Zhang ◽  
Haiying Xu ◽  
Xinghua Sang ◽  
Li Wang ◽  
...  

In the process of electron beam freeform fabrication (EBF3), due to the continuous change of thermal conditions and variability in wire feeding in the deposition process, geometric deviations are generated in the deposition of each layer. In order to prevent the layer-by-layer accumulation of the deviation, it is necessary to perform online geometry measurement for each deposition layer, based on which the error compensation can be done for the previous deposition layer in the next deposition layer. However, the traditional three-dimensional reconstruction method that employs structured laser cannot meet the requirements of long-term stable operation in the manufacturing process of EBF3. Therefore, this paper proposes a method to measure the deposit surfaces based on the position information of electron beam speckle, in which an electron beam is used to bombard the surface of the deposit to generate the speckle. Based on the structured information of the electron beam in the vacuum chamber, the three-dimensional reconstruction of the surface of the deposited parts is realized without need of additional structured laser sensor. In order to improve the detection accuracy, the detection error is theoretically analyzed and compensated. The absolute error after compensation is smaller than 0.1 mm, and the precision can reach 0.1%, which satisfies the requirements of 3D reconstruction of the deposited parts. An online measurement system is built for the surface of deposited parts in the process of electron beam freeform fabrication, which realizes the online 3D reconstruction of the surface of the deposited layer. In addition, in order to improve the detection stability of the whole system, the image processing algorithm suitable for this scene is designed. The reliability and speed of the algorithm are improved by ROI extraction, threshold segmentation, and expansion corrosion. In addition, the speckle size information can also reflect the thermal conditions of the surface of the deposited parts. Hence, it can be used for online detection of defects such as infusion and voids.


1991 ◽  
Vol 111 (5) ◽  
pp. 917-920 ◽  
Author(s):  
Ryuzo Toriya ◽  
Toshio Arima ◽  
Akio Kuraoka ◽  
Takuya Uemura

ORL ◽  
2009 ◽  
Vol 71 (6) ◽  
pp. 334-341 ◽  
Author(s):  
Fang-Lu Chi ◽  
Zhao Han ◽  
Pei-Dong Dai ◽  
Yi-Bo Huang ◽  
Ning Cong ◽  
...  

1998 ◽  
Vol 120 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
Hiroshi Wada ◽  
Michiko Sugawara ◽  
Toshimitsu Kobayashi ◽  
Koji Hozawa ◽  
Tomonori Takasaka

2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Yuanyuan Shi ◽  
Si Chen ◽  
Xue Chen ◽  
Pan Xue

Aim. To study the diagnostic effect of hip fracture in the elderly. In this paper, a total of 100 elderly patients with hip fracture from January 2020 to May 2021 were selected for X-ray and CT examination after admission. The operation was taken as the final criteria for determining hip fracture type, and the diagnosis of hip fracture by CT three-dimensional reconstruction was analyzed and studied. The results showed that the diagnostic rate of CT 3D reconstruction for various types of hip fracture in the elderly was higher than that of CT plain scan and X-ray ( P < 0.05 ). For the diagnosis of intra-articular small bone fragments, the rate of missed diagnosis was 2% (2/100) with CT 3D reconstruction, 10% (10/100) with conventional CT scan, and 20% (20/100) with X-ray. The rate of misdiagnosis was 5.0% (5/100) with CT 3D reconstruction. Routine CT scan was 15% (15/100), X-ray was 30% (30/100), and CT 3D reconstruction was significantly lower than other examinations ( P < 0.05 ). Conclusion. CT 3D reconstruction has high accuracy in the diagnosis of various types of hip fractures in the elderly.


2009 ◽  
Vol 19 (1,2) ◽  
pp. 21-26 ◽  
Author(s):  
R. Hofman ◽  
J.M. Segenhout ◽  
H.P. Wit

2013 ◽  
Vol 311 ◽  
pp. 153-157
Author(s):  
Xing Gao ◽  
Ning Yu ◽  
Ming Hong Liao

Online rapid three-dimensional reconstruction is widely applied in virtual reality, heritage preservation, bio-engineering and architectural fields. The error caused by image quality or manual import is the main reason for the low quality of model details when applying current reconstruction methods while meeting the time premise. To solve this problem, the paper proposes a fast and smooth carving algorithm for online 3d reconstruction by joining the filter. By applying the method, you can get a more realistic and smooth three-dimensional reconstruction results. First, we convert the input point cloud to meshes through Delaunay tetrahedralisation. Then we reconstruct the model with the space carving algorithm with the filter to obtain the result. The experiment result shows our method exceeds existing methods while meeting the time constraints under the premise at the same time.


Sign in / Sign up

Export Citation Format

Share Document