scholarly journals Gas-driven massive black hole binaries: signatures in the nHz gravitational wave background

2011 ◽  
Vol 411 (3) ◽  
pp. 1467-1479 ◽  
Author(s):  
B. Kocsis ◽  
A. Sesana
2020 ◽  
Vol 498 (1) ◽  
pp. 537-547 ◽  
Author(s):  
Magdalena S Siwek ◽  
Luke Zoltan Kelley ◽  
Lars Hernquist

ABSTRACT Massive black hole binaries (MBHBs) form as a consequence of galaxy mergers. However, it is still unclear whether they typically merge within a Hubble time, and how accretion may affect their evolution. These questions will be addressed by pulsar timing arrays (PTAs), which aim to detect the gravitational wave (GW) background (GWB) emitted by MBHBs during the last Myr of inspiral. Here, we investigate the influence of differential accretion on MBHB merger rates, chirp masses, and the resulting GWB spectrum. We evolve an MBHB sample from the Illustris hydrodynamic cosmological simulation using semi-analytical models and for the first time self-consistently evolve their masses with binary accretion models. In all models, MBHBs coalesce with median total masses up to 1.5 × 108 M⊙, up to 3−4 times larger than in models neglecting accretion. In our model with the largest plausible impact, the median mass ratio of coalescing MBHBs increases by a factor 3.6, the coalescence rate by $52.3{{\ \rm per\ cent}}$, and the GWB amplitude by a factor 4.0, yielding a dimensionless GWB strain $A_{yr^{-1}} = 1 \times 10^{-15}$. Our model that favours accretion on to the primary MBH reduces the median mass ratio of coalescing MBHBs by a factor of 2.9, and yields a GWB amplitude $A_{yr^{-1}} = 3.1 \times 10^{-16}$. This is nearly indistinguishable from our model neglecting accretion, despite higher MBHB masses at coalescence. We further predict binary separation and mass ratio distributions of stalled MBHBs in the low-redshift Universe, and find that these depend sensitively on binary accretion models. This presents the potential for combined electromagnetic and GW observational constraints on merger rates and accretion models of MBHB populations.


2012 ◽  
Vol 8 (S291) ◽  
pp. 177-177
Author(s):  
Ryan Shannon

AbstractThe direct detection of gravitational waves will usher in a new era of astrophysics, enabling the study of regions of the universe opaque to electromagnetic radiation or electromagnetically quiet. An ensemble of pulsars (referred to as a pulsar timing array) provides a set of clocks distributed across the Galaxy sensitive to gravitational waves with periods on the order of five years (frequencies of many nanohertz). Plausible source of gravitational waves in this frequency band include massive black hole binaries in the throes of mergers and oscillating cosmic strings. The stochastic gravitational wave background, the sum of gravitational waves emitted throughout the universe, is the most likely signal to be detected by a pulsar timing array.While the detection of gravitational waves will be a milestone in pulsar astronomy, a constraining limit on the strength of the gravitational wave background can be used to constrain cosmological models and early Universe physics. Here we present a new algorithm that can be used to constrain the strength of the GWB with a pulsar timing array. We then apply this technique to Parkes Pulsar Timing Array observations and place a new limit on the strength of the GWB. We conclude by discussing the astrophysical implications of this limit and the prospects for detecting gravitational waves with pulsars.


2021 ◽  
Vol 503 (1) ◽  
pp. 498-510
Author(s):  
Imran Tariq Nasim ◽  
Cristobal Petrovich ◽  
Adam Nasim ◽  
Fani Dosopoulou ◽  
Fabio Antonini

ABSTRACT Supermassive black hole (SMBH) binaries represent the main target for missions such as the Laser Interferometer Space Antenna and Pulsar Timing Arrays. The understanding of their dynamical evolution prior to coalescence is therefore crucial to improving detection strategies and for the astrophysical interpretation of the gravitational wave data. In this paper, we use high-resolution N-body simulations to model the merger of two equal-mass galaxies hosting a central SMBH. In our models, all binaries are initially prograde with respect to the galaxy sense of rotation. But, binaries that form with a high eccentricity, e ≳ 0.7, quickly reverse their sense of rotation and become almost perfectly retrograde at the moment of binary formation. The evolution of these binaries proceeds towards larger eccentricities, as expected for a binary hardening in a counter-rotating stellar distribution. Binaries that form with lower eccentricities remain prograde and at comparatively low eccentricities. We study the origin of the orbital flip by using an analytical model that describes the early stages of binary evolution. This model indicates that the orbital plane flip is due to the torque from the triaxial background mass distribution that naturally arises from the galactic merger process. Our results imply the existence of a population of SMBH binaries with a high eccentricity and could have significant implications for the detection of the gravitational wave signal emitted by these systems.


Sign in / Sign up

Export Citation Format

Share Document