Stimulatory action of mitemcinal (GM-611), an acid-resistant non-peptide motilin receptor agonist, on colonic motor activity and defecation: spontaneous and mitemcinal-induced giant migrating contractions during defecation in dogs

2009 ◽  
Vol 21 (10) ◽  
pp. 1085-e91 ◽  
Author(s):  
t. hirabayashi ◽  
y. morikawa ◽  
h. matsufuji ◽  
k. hoshino ◽  
k. hagane ◽  
...  
2011 ◽  
Vol 140 (5) ◽  
pp. S-607
Author(s):  
Min Jung Lee ◽  
Sunghak Choi ◽  
Kang Hun Cho ◽  
Hyun Min Park ◽  
Hyun Jung Sung ◽  
...  

1992 ◽  
Vol 262 (1) ◽  
pp. G62-G68 ◽  
Author(s):  
S. K. Sarna

We investigated the effect of absorbable and nonabsorbable fluid perfusion and cleansing on colonic motor activity in eight intact conscious dogs. Each dog was instrumented with an indwelling catheter in the proximal colon and seven strain gauge transducers on the entire colon. After an overnight fast, a control recording was made for 3 h, followed by 3 h of perfusion and 3 additional h of postperfusion recording. Next day, a 3-h recording was made when the colon was empty. The colon exhibited normal migrating and nonmigrating motor complexes in the control uncleansed state. The perfusion of absorbable electrolyte or nonabsorbable Colyte solution immediately disrupted the migrating motor complexes and replaced them with almost continuous but irregular contractions at all recording sites. Both solutions significantly prolonged the mean and total duration per hour of contractile states in the proximal, middle, and distal colon. The dogs began to leak fluid stools in squirts approximately 40-80 min after the start of perfusion. This type of incontinence was not associated with any specific type of motor activity. Infrequently, giant migrating contractions occurred during perfusion and caused explosive diarrhea. The migrating motor complexes remained disrupted during the 3-h postperfusion period. However, on the next day, the empty colon exhibited normal migrating motor complexes. The frequency of giant migrating contractions during perfusion and in the empty colon was significantly greater than that in the normal uncleansed colon. The total duration per hour of colonic motor activity in the empty colon was also greater than that in the normal uncleansed colon. We conclude that excessive fluid in the colon significantly alters its motor pattern.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 306 (2) ◽  
pp. 787-793 ◽  
Author(s):  
Tadashi Tsubouchi ◽  
Takaharu Saito ◽  
Fujie Mizutani ◽  
Toshie Yamauchi ◽  
Yuji Iwanaga

2014 ◽  
Vol 735 ◽  
pp. 115-122 ◽  
Author(s):  
Min Jung Lee ◽  
Kang Hun Cho ◽  
Hyun Min Park ◽  
Hyun Jung Sung ◽  
Sunghak Choi ◽  
...  

1992 ◽  
Vol 263 (4) ◽  
pp. G518-G526 ◽  
Author(s):  
M. F. Otterson ◽  
S. K. Sarna ◽  
S. C. Leming ◽  
J. E. Moulder ◽  
J. G. Fink

The colonic motor effects of fractionated irradiation were studied in five conscious dogs. Seven colonic and two ileal strain gauge transducers were implanted. After control recordings, an abdominal dose of 250 cGy was administered three times a week on alternate days for three successive weeks (total dose 2,250 cGy). Recordings were then continued for 3 wk after the completion of radiation. Colonic giant migrating contractions (GMCs) occurred at a frequency of 0.15 +/- 0.05 contractions/h in the control state. Only one of these contractions (8.3%) originated in the small bowel and propagated into the colon. Abdominal field irradiation significantly increased the incidence of colonic GMCs to 0.51 +/- 0.11 contractions/h (P < 0.05). Fifty-four percent of GMCs originated in the small intestine. GMCs during the radiation schedule were associated with explosive diarrhea on seven occasions. Irradiation did not alter the frequency of colonic migrating motor complexes, but the mean duration of contractile states decreased in the middle and distal colon. Diarrhea occurred as early as the second dose of radiation. Pathological changes in the colon were correlated with motor activity. Both small intestinal and colonic GMCs reverted to control frequencies after cessation of radiation exposure. Abdominal irradiation significantly altered the contractile activity of the colon. These changes are associated with abdominal cramping and diarrhea.


1989 ◽  
Vol 28 (3) ◽  
pp. 315-322 ◽  
Author(s):  
G. Stacher ◽  
G. Gaupmann ◽  
C. Schneider ◽  
G. Stacher-Janotta ◽  
G. Steiner-Mittelbach ◽  
...  

1995 ◽  
Vol 176 (1) ◽  
pp. 53-60 ◽  
Author(s):  
CHIKASHI SHIBATA ◽  
IWAO SASAKI ◽  
HIROO NAITO ◽  
MICHINAGA TAKAHASHI ◽  
TAKASHI DOI ◽  
...  

1984 ◽  
Vol 246 (4) ◽  
pp. G355-G360 ◽  
Author(s):  
S. K. Sarna ◽  
R. Condon ◽  
V. Cowles

We report here the characteristics of a cyclic motor activity in the colon of conscious dogs and its relationship to small intestinal migrating motor complexes (MMCs). The colonic motor activity was recorded by four equispaced strain gauges and small intestinal myoelectric activity by four equispaced bipolar electrodes. The colonic motor activity was characterized by rhythmic bursts of contractions. The mean durations of bursts of contractions varied from 7.0 to 11.5 min at the four colonic recording sites. Those bursts of contractions which migrated over at least three recording sites were called colonic migrating motor complexes (CMMCs). All other patterns of bursts of contractions were called colonic nonmigrating motor complexes (CNMCs). A total of 160 CMMCs were recorded during a total recording period of 132 h; 151 CMMCs migrated caudad and 9 orad. The mean period of caudad migrating CMMCs was 53.3 +/- 5.4 (SE) min, and their mean migration time was 11.3 +/- 1.2 (SE) min. The onset of CMMCs was not temporally related to the onset of small intestinal migrating myoelectric complexes in the duodenum or their arrival in the terminal ileum. CMMCs did not have phases I to IV like those of small intestinal MMCs, but two consecutive CMMCs were separated by a quiescent state or by one or more randomly occurring bursts of contractions (CNMCs).


1991 ◽  
Vol 260 (4) ◽  
pp. G646-G652 ◽  
Author(s):  
M. Dapoigny ◽  
S. K. Sarna

We investigated the effect of physical exercise on colonic motor activity in the fasted and fed states in six conscious dogs. Each dog was implanted with nine strain gauge transducers: three on the proximal, three on the middle, and three on the distal colon. The dogs ran for 1 h on a treadmill at 5 km/h (slope 5%). In the fasted state, the dogs exercised during the 5th h of recording after an overnight fast, and in the fed state during the 1st, 3rd, and 5th postprandial hour. In the fasted state, exercise significantly decreased the frequency of colonic migrating motor complexes (MMCs) but had no effect on the total or the mean duration of contractile states in the proximal, middle, and distal colon. Postprandially, exercise disrupted colonic MMCs and replaced them with nonmigrating motor complexes in all three periods of exercise (1st, 3rd, and 6th h). Exercise also increased the total duration per hour of contractile activity throughout the colon during the 1st and 3rd h and only in the distal colon during the 6th h after the meal. The dogs never defecated during rest in the fasted or the fed state. Shortly after the start of exercise in the fasted and fed states, giant migrating contractions (GMCs) occurred, and they were followed by defecation. In approximately 40% of the experiments, another GMC originated in the proximal colon, approximately 10 min after the first defecation, and migrated caudad up to the middle colon. These GMCs were not associated with defecation but caused mass movements.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document