scholarly journals Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth

1993 ◽  
Vol 3 (1) ◽  
pp. 1-30 ◽  
Author(s):  
Nicholas C. Carpita ◽  
David M. Gibeaut
1980 ◽  
pp. 91-162 ◽  
Author(s):  
ALAN DARVILL ◽  
MICHAEL McNEIL ◽  
PETER ALBERSHEIM ◽  
DEBORAH P. DELMER

1996 ◽  
Vol 41 (6) ◽  
pp. 1507-1510 ◽  
Author(s):  
Thi Bach Tuyet Lam ◽  
Kenji Iiyama ◽  
Bruce A. Stone

2011 ◽  
Vol 2011 (11) ◽  
pp. 1709-1718 ◽  
Author(s):  
Christian Reus ◽  
Kai Ruth ◽  
Sandor Tüllmann ◽  
Michael Bolte ◽  
Hans-Wolfram Lerner ◽  
...  

1987 ◽  
Vol 165 (1) ◽  
pp. 53-68 ◽  
Author(s):  
Helen D. Chapman ◽  
Victor J. Morris ◽  
Robert R. Selvendran ◽  
Malcolm A. O'Neill

Author(s):  
Ruiqin Zhong ◽  
Dennis R Phillips ◽  
Zheng-Hua Ye

Abstarct Xyloglucan is the most abundant hemicellulose in the primary cell walls of dicots. Dicot xyloglucan is the XXXG-type consisting of repeating units of three consecutive xylosylated Glc residues followed by one unsubstituted Glc. Its xylosylation is catalyzed by xyloglucan 6-xylosyltransferases (XXTs) and there exist five XXTs (AtXXT1-5) in Arabidopsis. While AtXXT1and AtXXT2 have been shown to add the first two Xyl residues in the XXXG repeat, which XXTs are responsible for the addition of the third Xyl residue remains elusive although AtXXT5 was a proposed candidate. In this report, we generated recombinant proteins of all five Arabidopsis XXTs and one rice XXT (OsXXT1) in the mammalian HEK293 cells and investigated their ability to sequentially xylosylate Glc residues to generate the XXXG xylosylation pattern. We found that like AtXXT1/2, AtXXT4 and OsXXT1 could efficiently xylosylate the cellohexaose (G6) acceptor to produce mono- and di-xylosylated G6, whereas AtXXT5 was only barely capable of adding one Xyl onto G6. When AtXXT1-catalyzed products were used as acceptors, AtXXT1/2/4 and OsXXT1 but not AtXXT5 were able to xylosylate additional Glc residues to generate tri- and tetra-xylosylated G6. Further characterization of the tri- and tetra-xylosylated G6 revealed that they had the sequence of GXXXGG and GXXXXG with three and four consecutive xylosylated Glc residues, respectively. In addition, we have found that although tri-xylosylation occurred on G6, cello-oligomers with a degree of polymerization of 3 to 5 could only be mono- and di-xylosylated. Together, these results indicate that each of AtXXT1/2/4 and OsXXT1 is capable of sequentially adding Xyl onto three contiguous Glc residues to generate the XXXG xylosylation pattern and these findings provide new insight into the biochemical mechanism underlying xyloglucan biosynthesis.


Author(s):  
Ranita Pal ◽  
Pratim Kumar Chattaraj

In the current pandemic-stricken world, quantitative structure-activity relationship (QSAR) analysis has become a necessity in the domain of molecular biology and drug design, realizing that it helps estimate properties and activities of a compound, without actually having to spend time and resources to synthesize it in the laboratory. Correlating the molecular structure of a compound with its activity depends on the choice of the descriptors, which becomes a difficult and confusing task when we have so many to choose from. In this mini-review, the authors delineate the importance of very simple and easy to compute descriptors in estimating various molecular properties/toxicity.


Sign in / Sign up

Export Citation Format

Share Document