Caffeic acid: O-methyltransferases and the biosynthesis of ferulic acid in primary cell walls of wheat seedlings

1996 ◽  
Vol 41 (6) ◽  
pp. 1507-1510 ◽  
Author(s):  
Thi Bach Tuyet Lam ◽  
Kenji Iiyama ◽  
Bruce A. Stone
2000 ◽  
Vol 28 (9) ◽  
pp. 865-879 ◽  
Author(s):  
Susan M Carnachan ◽  
Philip J Harris
Keyword(s):  

2018 ◽  
Vol 15 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Maria A. Morosanova ◽  
Anton S. Fedorov ◽  
Elena I. Morosanova

Background: The consumption of antioxidants, including phenolic compounds, is considered important for preventing the oxidative damage diseases and ageing. The total polyphenol content (TPC) is the parameter used to estimate the quality of plant-derived products. Methods: Phenol oxidase activity of green bean (Phaseolus vulgaris) crude extract (in the presence of hydrogen peroxide) and banana (Musa sp.) pulp crude extract has been studied spectrophotometrically using catechol, gallic acid, caffeic acid, ferulic acid, and quercetin as substrates. All studied compounds have been oxidized in the presence of green bean crude extract and hydrogen peroxide; all studied compounds except ferulic acid have been oxidized in the presence of banana pulp crude extract. Michaelis constants (Km) and maximum reaction rates (Vmax) have been determined for oxidation in the presence of green bean crude extract and hydrogen peroxide (Km are 3.8×10-4 M, 1.6×10-3 M, 2.2×10-4 M, 2.3×10-4 M, 1.4×10-4 M and Vmax are 0.046 min-1, 0.102 min-1, 0.185 min-1, 0.053 min-1, 0.041 min-1 for catechol, gallic acid, caffeic acid, ferulic acid, and quercetin, respectively) and for oxidation in the presence of banana pulp crude extract (Km are 1.6×10-3 M, 3.8×10-3 M, 2.2×10-3 M, 4.2×10-4 M and Vmax are 0.058 min-1, 0.025 min-1, 0.027 min-1, 0.015 min-1 for catechol, gallic acid, caffeic acid, and quercetin, respectively). The influence of 3-methyl-2-benzothiazolinone hydrazone (MBTH) on the oxidation reactions kinetics has been studied: Michaelis constants values decrease and maximum reaction rates increase, which contributes to the increase in sensitivity of the determination. Results: Kinetic procedures of Total Polyphenol Content (TPC) determination using crude plants extracts in the presence of MBTH have been proposed (time of analysis is 1 min). For gallic acid (used as a standard for TPC determination) detection limit is 5.3×10-5 M, quantitation limit is 1.8×10-4 M, and linear range is 1.8×10-4 - 1.3×10-3 M for green bean crude extract; detection limit is 2.9×10-5 M, quantitation limit is 9.5×10-5 M, and linear range is 9.5×10-5 - 2.4×10-3 M for banana pulp crude extract. Proposed procedures are characterized by higher interference thresholds for sulfites, ascorbic acid, and citric acid compared to pure enzymes (horseradish peroxidase and mushroom tyrosinase) in the same conditions. Compared with standard Folin-Ciocalteu (FC) method the procedures described in this work are also characterized by less interference and more rapid determination. Conclusion: The procedures have been applied to TPC determination in tea, coffee, and wine samples. The results agree with the FC method for tea and coffee samples and are lower for wine samples, probably, due to sulfites interference.


1979 ◽  
Vol 57 (7) ◽  
pp. 986-994 ◽  
Author(s):  
Satish K. Sharma ◽  
Stewart A. Brown

Two discrete furanocoumarin (5- and 8-) O-methyltransferases and a caffeic acid 3-O-methyl-transferase from cell cultures of Ruta graveolens L. have been copurified by affinity chromatography on 1,6-diaminohexane agarose (AH-Sepharose 4B) linked with 5-adenosyl-L-homocysteine (SAH). The furanocoumarin O-methyltransferases, which transfer a methyl group from S-adenosyl-L-methionine (SAM) to the 5- or 8-hydroxyls of linear furanocoumarins, were not retarded by 5-(3-carboxypropanamido)-xanthotoxin (CPAX) immobilized to AH-Sepharose 4B, but addition of SAM to the irrigant buffer led to complete retardation of both enzymes on this affinity system. An analogous phenomenon was observed for the caffeic acid O-methyltransferase, with a ferulic acid ligand coupled to the same insoluble support. SAH was as effective as SAM in promoting binding of the furanocoumarin O-methyltransferases to CPAX and caffeic acid 3-O-methyltransferase to immobilized ferulic acid, respectively. The strong and specific adsorption of these enzymes was abolished by exclusion of SAM or SAH from the irrigant buffer. It is concluded that the enzymes bind first to SAM or SAH, and that this binding process in turn induces the binding site for their specific phenolic substrates or their analogs. Based on these findings, a compulsory–ordered kinetic mechanism for the action of these O-methyltransferases is postulated.


2006 ◽  
Vol 87 (2) ◽  
pp. 286-296 ◽  
Author(s):  
Sara Jaramillo ◽  
Rocío Rodríguez ◽  
Ana Jiménez ◽  
Rafael Guillén ◽  
Juan Fernández-Bolaños ◽  
...  

1987 ◽  
Vol 165 (1) ◽  
pp. 53-68 ◽  
Author(s):  
Helen D. Chapman ◽  
Victor J. Morris ◽  
Robert R. Selvendran ◽  
Malcolm A. O'Neill

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Barbara Miranda Leite Costa Bocco ◽  
Fernanda Beraldo Lorena ◽  
Gustavo Werpel Fernandes ◽  
Roberta Monterazzo Cysneiros ◽  
Miriam Oliveira Ribeiro

Sign in / Sign up

Export Citation Format

Share Document