Control of root hair development in Arabidopsis thaliana by an endoplasmic reticulum anchored member of the R2R3-MYB transcription factor family

2011 ◽  
Vol 67 (3) ◽  
pp. 395-405 ◽  
Author(s):  
Erin Slabaugh ◽  
Michael Held ◽  
Federica Brandizzi
2020 ◽  
Vol 47 (5) ◽  
pp. 454
Author(s):  
Jian Li ◽  
Tian Chen ◽  
Fengzhen Huang ◽  
Penghui Dai ◽  
Fuxiang Cao ◽  
...  

Serious seed abortion of dove tree (Davidia involucrate Baill.) is one of the critical factors leading to the low fecundity of this species. Seed abortion is a complicated process and various factors have been verified to synergistically determine the fate of seeds. To reveal the mechanism of seed abortion in D. involucrata, we performed transcriptome analysis in normal and abortive seeds of D. involucrata. According to the transcriptome data, we noticed that most of the genes encoding a MYB transcription factor were predominantly expressed in abortive seeds. Among these, a gene named DiMYB1 was selected and its function was validated in this study. Overexpression of DiMYB1 resulted in obviously reduced viability of transgenic seeds and seedlings, and caused a significantly higher seed abortion rate. The vegetative growth of transgenic plants was hindered, resulting in an earlier flowering time. In addition, colour changes occurred in transgenic plants. Some transgenic sprouts, stems and pods appeared purple instead of green in colour. Our finding demonstrated that DiMYB1 participates in multiple plant developmental processes, especially in seed development in Arabidopsis thaliana (L.) Heynh., which indicated the similar role of this gene in D. involucrata.


2013 ◽  
Vol 55 (11) ◽  
pp. 1166-1178 ◽  
Author(s):  
Yanjie Zhang ◽  
Wanqi Liang ◽  
Jianxin Shi ◽  
Jie Xu ◽  
Dabing Zhang

2005 ◽  
Vol 15 (13) ◽  
pp. 1201-1206 ◽  
Author(s):  
Yun-Kuan Liang ◽  
Christian Dubos ◽  
Ian C. Dodd ◽  
Geoffrey H. Holroyd ◽  
Alistair M. Hetherington ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8473
Author(s):  
Xinling Hu ◽  
Lisha Zhang ◽  
Iain Wilson ◽  
Fenjuan Shao ◽  
Deyou Qiu

The MYB transcription factor family is one of the largest gene families playing regulatory roles in plant growth and development. The MYB family has been studied in a variety of plant species but has not been reported in Taxus chinensis. Here we identified 72 putative R2R3-MYB genes in T. chinensis using a comprehensive analysis. Sequence features, conversed domains and motifs were characterized. The phylogenetic analysis showed TcMYBs and AtMYBs were clustered into 36 subgroups, of which 24 subgroups included members from T. chinensis and Arabidopsis thaliana, while 12 subgroups were specific to one species. This suggests the conservation and specificity in structure and function of plant R2R3-MYBs. The expression of TcMYBs in various tissues and different ages of xylem were investigated. Additionally, miRNA-mediated posttranscriptional regulation analysis revealed that TcMYBs were the targets of miR858, miR159 and miR828, suggesting the posttranscriptional regulation of MYBs is highly conserved in plants. The results provide a basis for further study the role of TcMYBs in the regulation of secondary metabolites of T. chinensis.


Sign in / Sign up

Export Citation Format

Share Document