A complex from cultured Chinese hamster ovary cells containing nine aminoacyl-tRNA synthetases. Thermolabile leucyl-tRNA synthetase from the tsH1 mutant cell line is an integral component of this complex

1985 ◽  
Vol 147 (2) ◽  
pp. 281-289 ◽  
Author(s):  
Marc MIRANDE ◽  
Daniel CORRE ◽  
Jean-Pierre WALLER
1974 ◽  
Vol 143 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Gale Moline ◽  
Arnold Hampel ◽  
M. Duane Enger

1. Only two aminoacyl-tRNA synthetases from Chinese hamster ovary cells are found associated with ribosomes and polyribosomes. 2. Phenylalanyl-tRNA synthetase activity is found with the 60S subunit, 80S monoribosome and individual polyribosomes. An additional 15S form of the enzyme is also seen. 3. Lysyl-tRNA synthetase activity is found in a form of about 20S and associated with ribosomal subunits and polyribosomes. The ribosomal subunits having lysyl-tRNA synthetase activity are about 6S larger than the bulk of the ribosomal subunits. 4. The lysyl- and phenylalanyl-tRNA synthetases found in different complexes have differential sensitivity to EDTA and centrifugation properties.


1982 ◽  
Vol 2 (5) ◽  
pp. 535-544
Author(s):  
B Ray ◽  
H C Wu

Chinese hamster ovary mutants simultaneously resistant to ricin and Pseudomonas toxin have been isolated. Two mutant cell lines (4-10 and 11-2) were found to retain normal levels of binding of both ricin and Pseudomonas toxin. They were defective in the internalization of [125I]ricin into the mutant cells, as measured by both a biochemical assay for ricin internalization and electron microscopic autoradiographic studies. Although pretreatment of Chinese hamster ovary cells with a Na+/K+ ionophore, nigericin, resulted in an enhancement of the cytotoxicities of ricin and Pseudomonas toxin in the wild-type Chinese hamster ovary cells, preculture of the mutant cells did not alter the susceptibility of the mutant cells to either toxin. These results provide further evidence that there is a common step in the internalization process for ricin and Pseudomonas toxin.


1989 ◽  
Vol 9 (5) ◽  
pp. 1832-1838
Author(s):  
K J Kontis ◽  
S M Arfin

A cDNA for threonyl-tRNA synthetase was isolated from a human placental cDNA lambda gt11 expression library by immunological screening, and its identity was confirmed by hybrid-selected mRNA translation. With this cDNA used as a hybridization probe, borrelidin-resistant Chinese hamster ovary cells that overproduced threonyl-tRNA synthetase were shown to have increased levels of threonyl-tRNA synthetase mRNA and gene sequences. Amplification of the gene did not appear to have been accompanied by any major structural reorganizations.


1984 ◽  
Vol 4 (9) ◽  
pp. 1939-1941
Author(s):  
R E Cirullo ◽  
J J Wasmuth

Temperature-resistant revertants, derived from the temperature-sensitive CHO asparaginyl-tRNA synthetase mutant, Asn-5, were isolated and characterized. Several lines of evidence indicate that the temperature-resistant phenotype of the revertants is due to their overproducing the same altered enzyme present in the Asn-5 parent.


Sign in / Sign up

Export Citation Format

Share Document