trna synthetases
Recently Published Documents


TOTAL DOCUMENTS

1229
(FIVE YEARS 186)

H-INDEX

73
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Irem Avcilar-Kucukgoze ◽  
Anna Kashina

Protein arginylation, mediated by arginyltransferase ATE1, is a posttranslational modification of emerging biological importance that consists of transfer of the amino acid Arg to protein and peptide substrates. ATE1 utilizes charged tRNAArg as the donor of the arginyl group, which depends on the activity of Arg-tRNA synthetases (RARS) and is also utilized in translation. The mechanisms that regulate the functional balance between ATE1, RARS and translation are unknown. Here we addressed the functional interplay between these mechanisms using intracellular arginylation sensor in cell lines with overexpression or deletion of ATE1 and RARS isoforms. We find that arginylation levels depend on the physiological state of the cells but are not directly affected by translation activity or availability of RARS isoforms. However, displacement of RARS from the multi-synthetase complex leads to an increase in intracellular arginylation independently of RARS enzymatic activity. This effect is accompanied by ATE1 redistribution into the cytosol. Our results provide the first comprehensive analysis of the interdependence between translation, arginyl-tRNA synthesis, and arginylation.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jason C. Hyun ◽  
Jonathan M. Monk ◽  
Bernhard O. Palsson

Abstract Background With the exponential growth of publicly available genome sequences, pangenome analyses have provided increasingly complete pictures of genetic diversity for many microbial species. However, relatively few studies have scaled beyond single pangenomes to compare global genetic diversity both within and across different species. We present here several methods for “comparative pangenomics” that can be used to contextualize multi-pangenome scale genetic diversity with gene function for multiple species at multiple resolutions: pangenome shape, genes, sequence variants, and positions within variants. Results Applied to 12,676 genomes across 12 microbial pathogenic species, we observed several shared resolution-specific patterns of genetic diversity: First, pangenome openness is associated with species’ phylogenetic placement. Second, relationships between gene function and frequency are conserved across species, with core genomes enriched for metabolic and ribosomal genes and accessory genomes for trafficking, secretion, and defense-associated genes. Third, genes in core genomes with the highest sequence diversity are functionally diverse. Finally, certain protein domains are consistently mutation enriched across multiple species, especially among aminoacyl-tRNA synthetases where the extent of a domain’s mutation enrichment is strongly function-dependent. Conclusions These results illustrate the value of each resolution at uncovering distinct aspects in the relationship between genetic and functional diversity across multiple species. With the continued growth of the number of sequenced genomes, these methods will reveal additional universal patterns of genetic diversity at the pangenome scale.


Author(s):  
David Lizarazo ◽  
Karen Cifuentes ◽  
Paula Andrea Forero ◽  
Hernan Páez

Background: Anti-synthetase syndrome is a rare autoimmune disorder characterized by autoantibodies against aminoacyl-tRNA-synthetases. Inflammatory myopathy and interstitial lung disease could be present among other manifestations. Anti-Jo-1 is the most common antisynthetase antibody and is the most likely to present with the classic triad (interstitial lung disease, myositis, and arthritis) and have more muscle and joint involvement than patients with other antisynthetase antibodies. Case report: Here, we present a case of a 60-year-old female patient, with a previous diagnosis of myositis, secondary to the anti-synthetase syndrome, with a complication by pyogenic myositis. Conclusion: Diagnosis is made by a multidisciplinary approach, occasionally muscle and/or lung biopsy are needed. Imaging studies, Especially magnetic resonance imaging, based on findings such as muscle and fascial edema, and fatty tissue replacement, allow an optimal approach.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009953
Author(s):  
Jordan Guillon ◽  
Hugo Coquelet ◽  
Géraldine Leman ◽  
Bertrand Toutain ◽  
Coralie Petit ◽  
...  

Oncogenes or chemotherapy treatments trigger the induction of suppressive pathways such as apoptosis or senescence. Senescence was initially defined as a definitive arrest of cell proliferation but recent results have shown that this mechanism is also associated with cancer progression and chemotherapy resistance. Senescence is therefore much more heterogeneous than initially thought. How this response varies is not really understood, it has been proposed that its outcome relies on the secretome of senescent cells and on the maintenance of their epigenetic marks. Using experimental models of senescence escape, we now described that the stability of this proliferative arrest relies on specific tRNAs and aminoacyl-tRNA synthetases. Following chemotherapy treatment, the DNA binding of the type III RNA polymerase was reduced to prevent tRNA transcription and induce a complete cell cycle arrest. By contrast, during senescence escape, specific tRNAs such as tRNA-Leu-CAA and tRNA-Tyr-GTA were up-regulated. Reducing tRNA transcription appears necessary to control the strength of senescence since RNA pol III inhibition through BRF1 depletion maintained senescence and blocked the generation of escaping cells. mTOR inhibition also prevented chemotherapy-induced senescence escape in association with a reduction of tRNA-Leu-CAA and tRNA-Tyr-GTA expression. Further confirming the role of the tRNA-Leu-CAA and tRNA-Tyr-GTA, results showed that their corresponding tRNA ligases, LARS and YARS, were necessary for senescence escape. This effect was specific since the CARS ligase had no effect on persistence. By contrast, the down-regulation of LARS and YARS reduced the emergence of persistent cells and this was associated with the modulation of E2F1 target genes expression. Overall, these findings highlight a new regulation of tRNA biology during senescence and suggest that specific tRNAs and ligases contribute to the strength and heterogeneity of this tumor suppressive pathway.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Soumyananda Chakraborti ◽  
Jyoti Chhibber-Goel ◽  
Amit Sharma

Abstract Background Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infections, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in protein synthesis and are potent anti-infective drug targets. The structure–function activity relationship of aaRSs in mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored. Methods We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database (https://vectorbase.org/vectorbase/app) and web-based tools were utilized to predict the subcellular localizations (TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases—were generated using the I-TASSER and Phyre protein modeling servers. Results Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity amongst the aaRSs from the four Anopheles spp. was > 80% and in Ae. aegypti was > 50%. Conclusions Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against the studied Anopheles spp. and Ae. aegypti.


2021 ◽  
Vol 7 (4) ◽  
pp. 73
Author(s):  
Nina Krauer ◽  
Robert Rauscher ◽  
Norbert Polacek

Protein biosynthesis is essential for any organism, yet how this process is regulated is not fully understood at the molecular level. During evolution, ribosomal RNA expanded in specific regions, referred to as rRNA expansion segments (ES). First functional roles of these expansions have only recently been discovered. Here we address the role of ES7La located in the large ribosomal subunit for factor recruitment to the yeast ribosome and the potential consequences for translation. Truncation of ES7La has only minor effects on ribosome biogenesis, translation efficiency and cell doubling. Using yeast rRNA deletion strains coupled with ribosome-specific mass spectrometry we analyzed the interactome of ribosomes lacking ES7La. Three aminoacyl-tRNA synthetases showed reduced ribosome association. Synthetase activities however remained unaltered suggesting that the pool of aminoacylated tRNAs is unaffected by the ES deletion. These results demonstrated that aminoacylation activities of tRNA synthetases per se do not rely on ribosome association. These findings suggest a role of ribosome-associated aminoacyl-tRNA synthetase beyond their core enzymatic functions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jessica L. E. Wimmer ◽  
Karl Kleinermanns ◽  
William F. Martin

The possible evolutionary significance of pyrophosphate (PPi) has been discussed since the early 1960s. Lipmann suggested that PPi could have been an ancient currency or a possible environmental source of metabolic energy at origins, while Kornberg proposed that PPi vectorializes metabolism because ubiquitous pyrophosphatases render PPi forming reactions kinetically irreversible. To test those ideas, we investigated the reactions that consume phosphoanhydride bonds among the 402 reactions of the universal biosynthetic core that generates amino acids, nucleotides, and cofactors from H2, CO2, and NH3. We find that 36% of the core’s phosphoanhydride hydrolyzing reactions generate PPi, while no reactions use PPi as an energy currency. The polymerization reactions that generate ~80% of cell mass – protein, RNA, and DNA synthesis – all generate PPi, while none use PPi as an energy source. In typical prokaryotic cells, aminoacyl tRNA synthetases (AARS) underlie ~80% of PPi production. We show that the irreversibility of the AARS reaction is a kinetic, not a thermodynamic effect. The data indicate that PPi is not an ancient energy currency and probably never was. Instead, PPi hydrolysis is an ancient mechanism that imparts irreversibility, as Kornberg suggested, functioning like a ratchet’s pawl to vectorialize the life process toward growth. The two anhydride bonds in nucleoside triphosphates offer ATP-cleaving enzymes an option to impart either thermodynamic control (Pi formation) or kinetic control (PPi formation) upon reactions. This dual capacity explains why nature chose the triphosphate moiety of ATP as biochemistry’s universal energy currency.


2021 ◽  
Vol 8 ◽  
Author(s):  
Meng Bian ◽  
Shiqiong Huang ◽  
Dongsheng Yu ◽  
Zheng Zhou

Lung cancer, one of the most malignant tumors, has extremely high morbidity and mortality, posing a serious threat to global health. It is an urgent need to fully understand the pathogenesis of lung cancer and provide new ideas for its treatment. Interestingly, accumulating evidence has identified that transfer RNAs (tRNAs) and tRNA metabolism–associated enzymes not only participate in the protein translation but also play an important role in the occurrence and development of lung cancer. In this review, we summarize the different aspects of tRNA metabolism in lung cancer, such as tRNA transcription and mutation, tRNA molecules and derivatives, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (ARSs), aiming at a better understanding of the pathogenesis of lung cancer and providing new therapeutic strategies for it.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Erika A. DeBenedictis ◽  
Gavriela D. Carver ◽  
Christina Z. Chung ◽  
Dieter Söll ◽  
Ahmed H. Badran

AbstractGenetic code expansion technologies supplement the natural codon repertoire with assignable variants in vivo, but are often limited by heterologous translational components and low suppression efficiencies. Here, we explore engineered Escherichia coli tRNAs supporting quadruplet codon translation by first developing a library-cross-library selection to nominate quadruplet codon–anticodon pairs. We extend our findings using a phage-assisted continuous evolution strategy for quadruplet-decoding tRNA evolution (qtRNA-PACE) that improved quadruplet codon translation efficiencies up to 80-fold. Evolved qtRNAs appear to maintain codon-anticodon base pairing, are typically aminoacylated by their cognate tRNA synthetases, and enable processive translation of adjacent quadruplet codons. Using these components, we showcase the multiplexed decoding of up to four unique quadruplet codons by their corresponding qtRNAs in a single reporter. Cumulatively, our findings highlight how E. coli tRNAs can be engineered, evolved, and combined to decode quadruplet codons, portending future developments towards an exclusively quadruplet codon translation system.


Sign in / Sign up

Export Citation Format

Share Document