scholarly journals Site-specific phosphorylation of the purified receptor for calcium-channel blockers by cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase II

1988 ◽  
Vol 178 (2) ◽  
pp. 535-542 ◽  
Author(s):  
Holger JAHN ◽  
Wolfgang NASTAINCZYK ◽  
Axel RoHRKASTEN ◽  
Toni SCHNEIDER ◽  
Franz HOFMANN
1996 ◽  
Vol 84 (3) ◽  
pp. 652-662 ◽  
Author(s):  
Hugh C. Hemmings ◽  
Anna I. B. Adamo

Background Protein kinase C is a signal transducing enzyme that is an important regulator of multiple physiologic processes and a potential molecular target for general anesthetic actions. However, the results of previous studies of the effects of general anesthetics on protein kinase C activation in vitro have been inconsistent. Methods The effects of halothane on endogenous brain protein kinase C activation were analyzed in isolated rat cerebrocortical nerve terminals (synaptosomes) and in synaptic membranes. Protein kinase C activation was monitored by the phosphorylation of MARCKS, a specific endogenous substrate. Results Halothane stimulated basal Ca2+ dependent phosphorylation of MARCKS (Mr = 83,000) in lysed synaptic membranes (2.1-fold; P< 0.01) and in intact synaptosomes (1.4-fold; P< 0.01). The EC50 for stimulation of MARCKS phosphorylation by halothene in synaptic membranes was 1.8 vol%. A selective peptide protein kinase C inhibitor, but not a protein phosphatase inhibitor (okadaic acid) or a peptide inhibitor of Ca2+/calmodulin-dependent protein kinase II, another Ca2+/-dependent signal transducing enzyme, blocked halothane-stimulated MARCKS phosphorylation in synaptic membranes. Halothane did not affect the phosphorylation of synapsin 1, a synaptic vesicle-associated protein substrate for Ca2+/calmodulin-dependent protein kinase II and AMP-dependent protein kinase, in synaptic membranes or intact synaptosomes subjected to KC1-evoked depolarization. However, halothane stimulated synapsin 1 phosphorylation evoked by ionomycin (a Ca2+ ionophore that permeabilizes membranes to Ca2+) in intact synaptosomes. Conclusions Halothane acutely stimulated basal protein kinase C activity in synaptosomes when assayed with endogenous nerve terminal substrates, lipids, and protein kinase C. This effect appeared to be selective for protein kinases C, because two other structurally similar second messenger-regulated protein kinases were not affected. Direct determinations of anesthetic effects on endogenous protein kinase C activation, translocation, and/or down-regulation are necessary to determine the ultimate effect of anesthetics on the protein kinase C signaling pathway in intact cells.


1991 ◽  
Vol 260 (4) ◽  
pp. F590-F595 ◽  
Author(s):  
T. Berl ◽  
J. Mansour ◽  
I. Teitelbaum

We examined the possibility that, in addition to stimulation of guanylate cyclase (GC), atrial natriuretic peptide (ANP) also activates phospholipase C (PLC) in cultured rat inner medullary collecting tubule (RIMCT) cells. ANP (10(-12)M) causes marked release of inositol trisphosphate (IP3) at a concentration that does not stimulate GC. Concentrations of ANP that stimulate GC (greater than or equal to 10(-10) M) result in attenuated IP3 release. Similarly, exogenous dibutyryl guanosine 3',5'-cyclic monophosphate (10(-6) M) markedly inhibits the response to 10(-10) M ANP. Inhibition of cyclic nucleotide-dependent protein kinase by H 8, but not inhibition of protein kinase C by H 7, restores the response to 10(-8) and 10(-6) M ANP. Therefore, activation of cyclic nucleotide-dependent protein kinase inhibits ANP-stimulated PLC activity. Activation of protein kinase C by phorbol 12-myristate-13-acetate (PMA) decreases ANP-stimulated IP3 production. Pretreatment with H 7, but not H 8, prevents inhibition by PMA. To explore a potential role for G proteins, we examined the effect of guanine nucleotide analogues on ANP-stimulated IP3 production in saponin-permeabilized cells. ANP-stimulated IP3 production is enhanced by GTP gamma S and is inhibited by GDP beta S. Similarly, preincubation with pertussis toxin prevents ANP-stimulated IP3 release. We conclude that ANP stimulates PLC in RIMCT cells via a pertussis toxin-sensitive G protein. Stimulation of PLC is inhibited on activation of either cyclic nucleotide or Ca2+-phospholipid dependent protein kinases.


1992 ◽  
Vol 262 (4) ◽  
pp. F560-F565 ◽  
Author(s):  
O. S. Ruiz ◽  
J. A. Arruda

Changes in the activity of the brush-border Na-H antiporter are accompanied by parallel changes in the activity of the Na-HCO3 cotransporter. Adenosine 3',5'-cyclic monophosphate (cAMP) and calmodulin inhibit the Na-H antiporter, whereas protein kinase C (PKC) stimulates it. We hypothesized that cAMP, calmodulin, and PKC should have similar effects on the Na-HCO3 cotransporter activity. Phosphorylated renal basolateral membranes were treated with either cAMP, calmodulin, or phorbol ester. cAMP, 1 microM, inhibited HCO3-dependent 22Na uptake without affecting 22Na uptake in presence of gluconate, suggesting that cAMP inhibits Na-HCO3 cotransporter activity without altering diffusive 22Na uptake. The effect of cAMP to inhibit the Na-HCO3 cotransporter could also be elicited by the catalytic subunit of cAMP, and this inhibitory effect was prevented by the protein kinase A (PKA) inhibitor. Calmodulin (1 microM), in presence of Ca, also inhibited HCO3-dependent 22Na uptake in presence of HCO3, whereas 22Na uptake in the presence of gluconate was unchanged. The inhibitory effect of calmodulin on HCO3-dependent 22Na uptake was prevented by N-(4-aminobutyl)-5-chloro-2-naphthalene sulfonamide (W-13), an inhibitor of calmodulin. Phorbol 12-myristate 13-acetate and PKC stimulated Na-HCO3 cotransporter activity, whereas the inactive analogue, 4 alpha-phorbol, failed to elicit such a stimulation. Basolateral membranes displayed cAMP-dependent and Ca-dependent protein kinase activities. Thus PKA and Ca-dependent protein kinases regulate the activity of the Na-HCO3 cotransporter and suggest that hormones that act through these systems modulate the activity of the Na-HCO3 cotransporter.


Sign in / Sign up

Export Citation Format

Share Document