ANP stimulates phospholipase C in cultured RIMCT cells: roles of protein kinases and G protein

1991 ◽  
Vol 260 (4) ◽  
pp. F590-F595 ◽  
Author(s):  
T. Berl ◽  
J. Mansour ◽  
I. Teitelbaum

We examined the possibility that, in addition to stimulation of guanylate cyclase (GC), atrial natriuretic peptide (ANP) also activates phospholipase C (PLC) in cultured rat inner medullary collecting tubule (RIMCT) cells. ANP (10(-12)M) causes marked release of inositol trisphosphate (IP3) at a concentration that does not stimulate GC. Concentrations of ANP that stimulate GC (greater than or equal to 10(-10) M) result in attenuated IP3 release. Similarly, exogenous dibutyryl guanosine 3',5'-cyclic monophosphate (10(-6) M) markedly inhibits the response to 10(-10) M ANP. Inhibition of cyclic nucleotide-dependent protein kinase by H 8, but not inhibition of protein kinase C by H 7, restores the response to 10(-8) and 10(-6) M ANP. Therefore, activation of cyclic nucleotide-dependent protein kinase inhibits ANP-stimulated PLC activity. Activation of protein kinase C by phorbol 12-myristate-13-acetate (PMA) decreases ANP-stimulated IP3 production. Pretreatment with H 7, but not H 8, prevents inhibition by PMA. To explore a potential role for G proteins, we examined the effect of guanine nucleotide analogues on ANP-stimulated IP3 production in saponin-permeabilized cells. ANP-stimulated IP3 production is enhanced by GTP gamma S and is inhibited by GDP beta S. Similarly, preincubation with pertussis toxin prevents ANP-stimulated IP3 release. We conclude that ANP stimulates PLC in RIMCT cells via a pertussis toxin-sensitive G protein. Stimulation of PLC is inhibited on activation of either cyclic nucleotide or Ca2+-phospholipid dependent protein kinases.

1998 ◽  
Vol 158 (3) ◽  
pp. 311-318 ◽  
Author(s):  
CE Berger ◽  
BR Horrocks ◽  
HK Datta

Calciotropic hormones such as parathyroid hormone (PTH) and calcitonin have been shown to have stimulatory and inhibitory effects respectively on superoxide anion (O2-) generation by osteoclasts, but the exact intracellular signalling mediating these pathways has not been investigated. In order to elucidate the intracellular pathways controlling O2- generation, we have carried out a systematic study of the effect of different agents on O2- production in osteoclasts cultured on bovine cortical bone. Dibutyryl cAMP and cholera toxin, while having no effect on the basal level of O2- production in bone-resorbing osteoclasts, were, however, found to completely block the stimulation of free radical production by PTH, pertussis toxin and ionomycin. The stimulation of O2- production was found to be independent of protein kinase C-dependent pathways since the presence of bisindolylmaleimide (GF109203X) (1 microM) did not block stimulation by PTH and pertussis toxin. Interestingly, while exposure to bisindolylmaleimide at this concentration did not have any effect on the basal level of O2- production, exposure to a higher concentration (10 microM), which is known to inhibit both protein kinase C and A, produced significant stimulation. These in vitro findings suggest that in the bone-resorbing cells, cAMP-dependent protein kinases prevent further stimulation of NADPH oxidase by agents such as PTH and pertussis toxin. The increase in cAMP has also been recently demonstrated to be associated with down-regulation of the oxidative burst in adherent neutrophils; and the findings reported here suggest a similar role for cAMP in O2- generation in osteoclasts cultured on bone.


1996 ◽  
Vol 84 (3) ◽  
pp. 652-662 ◽  
Author(s):  
Hugh C. Hemmings ◽  
Anna I. B. Adamo

Background Protein kinase C is a signal transducing enzyme that is an important regulator of multiple physiologic processes and a potential molecular target for general anesthetic actions. However, the results of previous studies of the effects of general anesthetics on protein kinase C activation in vitro have been inconsistent. Methods The effects of halothane on endogenous brain protein kinase C activation were analyzed in isolated rat cerebrocortical nerve terminals (synaptosomes) and in synaptic membranes. Protein kinase C activation was monitored by the phosphorylation of MARCKS, a specific endogenous substrate. Results Halothane stimulated basal Ca2+ dependent phosphorylation of MARCKS (Mr = 83,000) in lysed synaptic membranes (2.1-fold; P< 0.01) and in intact synaptosomes (1.4-fold; P< 0.01). The EC50 for stimulation of MARCKS phosphorylation by halothene in synaptic membranes was 1.8 vol%. A selective peptide protein kinase C inhibitor, but not a protein phosphatase inhibitor (okadaic acid) or a peptide inhibitor of Ca2+/calmodulin-dependent protein kinase II, another Ca2+/-dependent signal transducing enzyme, blocked halothane-stimulated MARCKS phosphorylation in synaptic membranes. Halothane did not affect the phosphorylation of synapsin 1, a synaptic vesicle-associated protein substrate for Ca2+/calmodulin-dependent protein kinase II and AMP-dependent protein kinase, in synaptic membranes or intact synaptosomes subjected to KC1-evoked depolarization. However, halothane stimulated synapsin 1 phosphorylation evoked by ionomycin (a Ca2+ ionophore that permeabilizes membranes to Ca2+) in intact synaptosomes. Conclusions Halothane acutely stimulated basal protein kinase C activity in synaptosomes when assayed with endogenous nerve terminal substrates, lipids, and protein kinase C. This effect appeared to be selective for protein kinases C, because two other structurally similar second messenger-regulated protein kinases were not affected. Direct determinations of anesthetic effects on endogenous protein kinase C activation, translocation, and/or down-regulation are necessary to determine the ultimate effect of anesthetics on the protein kinase C signaling pathway in intact cells.


1997 ◽  
Vol 321 (1) ◽  
pp. 211-216 ◽  
Author(s):  
Guillermo VELASCO ◽  
Manuel GUZMÁN ◽  
Victor A. ZAMMIT ◽  
Math J. H. GEELEN

The present work was undertaken to study the mechanism by which okadaic acid (OA), an inhibitor of protein phosphatases 1 and 2A, stimulates carnitine palmitoyltransferase I (CPT-I) in isolated rat hepatocytes [Guzmán, Kolodziej, Caldwell, Costorphine and Zammit (1994) Biochem. J. 300, 693–699]. The OA-induced stimulation of CPT-I was abolished by the general protein kinase inhibitor K-252a as well as by KN-62, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II (Ca2+/CM-PKII). However, neither the protein kinase C-specific inhibitor bisindolylmaleimide nor the protein kinase A/protein kinase C inhibitor H-7 was able to prevent the OA-induced stimulation of CPT-I. Hepatocyte-shrinkage-induced stimulation of CPT-I as well as OA-induced hepatocyte shrinkage was prevented by KN-62. KN-62 also antagonized the OA-enhanced release of lactate dehydrogenase from digitonin-permeabilized hepatocytes. Exposure of 32P-labelled hepatocytes to OA increased the degree of phosphorylation of Ca2+/CM-PKII, as immunoprecipitated by a monoclonal antibody raised against the α-subunit of rat brain kinase. This effect of OA was also antagonized by KN-62. The results thus indicate that the OA-dependent stimulation of CPT-I may be mediated (at least in part) by increased phosphorylation and subsequent activation of Ca2+/CM-PKII.


1991 ◽  
Vol 261 (6) ◽  
pp. C1081-C1090 ◽  
Author(s):  
K. B. Walsh ◽  
R. S. Kass

We have investigated the effects of stimulation of adenosine 3',5'-cyclic monophosphate-dependent protein kinase (protein kinase A) and Ca(2+)-diacylglycerol-dependent protein kinase (protein kinase C) on the delayed rectifier K+ current (IK) in guinea pig ventricular cells using a whole cell arrangement of the patch-clamp procedure. Stimulation of either protein kinase C or A resulted in enhanced IK activity. Augmentation of IK observed during stimulation of protein kinase A occurred in a markedly voltage-dependent manner, with the largest increases occurring at potentials near the threshold for IK activation. Enhancement of IK during stimulation of protein kinase C followed a different pattern, with minimal effects of the enzyme near IK threshold. Neither protein kinase A nor C altered the kinetics of IK activation, although both kinases slightly changed the kinetics of deactivation. Both kinases increased IK maximal conductance, but the effects of each kinase on the voltage-dependence of activation differed. Protein kinase A shifted IK activation toward more negative voltages but did not affect the slope of the activation curve. Protein kinase C, in contrast, changed the slope of the IK activation curve, with only a small effect on the half-maximal voltage of activation. These contrasting effects on the voltage dependence of IK activation are consistent with actions of the kinases at distinct sites on or near the IK channel protein.


Biochemistry ◽  
1984 ◽  
Vol 23 (21) ◽  
pp. 5036-5041 ◽  
Author(s):  
Hiroyoshi Hidaka ◽  
Masaki Inagaki ◽  
Sachiyo Kawamoto ◽  
Yasuharu Sasaki

Sign in / Sign up

Export Citation Format

Share Document