Quantitative trait loci and epistatic interactions in barley conferring resistance to net type net blotch (Pyrenophora teres f. teres) isolates

2009 ◽  
pp. no-no ◽  
Author(s):  
S. Gupta ◽  
C. D. Li ◽  
R. Loughman ◽  
M. Cakir ◽  
G. Platz ◽  
...  
Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 673-684
Author(s):  
J Gadau ◽  
R E Page ◽  
J H Werren

Abstract There is a 2.5-fold difference in male wing size between two haplodiploid insect species, Nasonia vitripennis and N. giraulti. The haploidy of males facilitated a full genomic screen for quantitative trait loci (QTL) affecting wing size and the detection of epistatic interactions. A QTL analysis of the interspecific wing-size difference revealed QTL with major effects and epistatic interactions among loci affecting the trait. We analyzed 178 hybrid males and initially found two major QTL for wing length, one for wing width, three for a normalized wing-size variable, and five for wing seta density. One QTL for wing width explains 38.1% of the phenotypic variance, and the same QTL explains 22% of the phenotypic variance in normalized wing size. This corresponds to a region previously introgressed from N. giraulti into N. vitripennis that accounts for 44% of the normalized wing-size difference between the species. Significant epistatic interactions were also found that affect wing size and density of setae on the wing. Screening for pairwise epistatic interactions between loci on different linkage groups revealed four additional loci for wing length and four loci for normalized wing size that were not detected in the original QTL analysis. We propose that the evolution of smaller wings in N. vitripennis males is primarily the result of major mutations at few genomic regions and involves epistatic interactions among some loci.


Genetics ◽  
1999 ◽  
Vol 153 (3) ◽  
pp. 1233-1243 ◽  
Author(s):  
David R Shook ◽  
Thomas E Johnson

Abstract We have identified, using composite interval mapping, quantitative trait loci (QTL) affecting a variety of life history traits (LHTs) in the nematode Caenorhabditis elegans. Using recombinant inbred strains assayed on the surface of agar plates, we found QTL for survival, early fertility, age of onset of sexual maturity, and population growth rate. There was no overall correlation between survival on solid media and previous measures of survival in liquid media. Of the four survival QTL found in these two environments, two have genotype-environment interactions (GEIs). Epistatic interactions between markers were detected for four traits. A multiple regression approach was used to determine which single markers and epistatic interactions best explained the phenotypic variance for each trait. The amount of phenotypic variance accounted for by genetic effects ranged from 13% (for internal hatching) to 46% (for population growth). Epistatic effects accounted for 9–11% of the phenotypic variance for three traits. Two regions containing QTL that affected more than one fertility-related trait were found. This study serves as an example of the power of QTL mapping for dissecting the genetic architecture of a suite of LHTs and indicates the potential importance of environment and GEIs in the evolution of this architecture.


2008 ◽  
Vol 20 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Géraldine Piessevaux ◽  
Virginie Lella ◽  
Michèle Rivière ◽  
Daniel Stieber ◽  
Pierre Drèze ◽  
...  

Genetics ◽  
1996 ◽  
Vol 143 (4) ◽  
pp. 1807-1817 ◽  
Author(s):  
Yuval Eshed ◽  
Dani Zamir

Abstract Epistasis plays a role in determining the phenotype, yet quantitative trait loci (QTL) mapping has uncovered little evidence for it. To address this apparent contradiction, we analyzed interactions between individual Lycopersicon pennellii chromosome segments introgressed into an otherwise homogeneous genetic background of L. esculentum (cv. M82). Ten different homozygous introgression lines, each containing from 4 to 58 cM of introgressed DNA, were crossed in a half diallele scheme. The 45 derived double heterozygotes were evaluated in the field for four yield-associated traits, along with the 10 single heterozygotes and M82. Of 180 (45 × 4) tested interactions, 28% were epistatic (P < 0.05) on both linear and geometric scales. The detected epistasis was predominately less-than-additive, i.e., the effect of the double heterozygotes was smaller than the sum of the effects of the corresponding single heterozygotes. Epistasis was also found for homozygous linked QTL affecting fruit mass and total soluble solids. Although the frequency of epistasis was high, additivity was the major component in the interaction of pairs of QTL. We propose that the diminishing additivity of QTL effects is amplified when more loci are involved; this mode of epistasis may be an important factor in phenotype canalization and in breeding.


Sign in / Sign up

Export Citation Format

Share Document