Provenance and thermal history of the Bayan Har Group in the western-central Songpan-Ganzi-Bayan Har terrane: Implications for tectonic evolution of the northern Tibetan Plateau

Island Arc ◽  
2009 ◽  
Vol 18 (3) ◽  
pp. 444-466 ◽  
Author(s):  
Guo-Can Wang ◽  
Robert P. Wintsch ◽  
John I. Garver ◽  
Mary Roden-Tice ◽  
She-Fa Chen ◽  
...  
2020 ◽  
Author(s):  
Jianfeng Li ◽  
Zhicheng Zhang ◽  
Yue Zhao

<p>        The northern Tibetan Plateau, between the Kunlun and the Altyn Tagh faults, contains high relief topography, such as the Eastern Kunlun Range, the Altyn Tagh Range and the Qilian mountain belt, and plays an important role in researching the tectonic evolution and topographic growth of the Tibetan Plateau. We present new apatite fission track (AFT) and <sup>40</sup>Ar/<sup>39</sup>Ar thermochronologic data from the Subei and Shibaocheng areas near the eastern Altyn Tagh fault. Two Cenozoic exhumation phases have been identified from our AFT thermochronology. The AFT cooling ages of ~ 60–40 Ma farther away from the faults represented a slow widespread denudation surface as response to the Indo-Eurasia collision and signified that the Subei and Shibaocheng areas denudated as a whole in the northern Tibetan Plateau. Another phase with AFT cooling ages between about 20.5 Ma to 13.6 Ma on the hanging walls near the faults, located in the Danghenanshan and Daxueshan Mountains, recorded widespread fault activities resulted from local uplift and exhumation in late Miocene (~ 8 Ma) acquired from AFT thermal history modeling. A Cretaceous exhumation (~ 120–70 Ma) acquired from AFT thermal history modeling may have made great contributions to the growth of the pre-Cenozoic northern Tibetan Plateau.</p>


Geosphere ◽  
2021 ◽  
Author(s):  
Chen Wu ◽  
Jie Li ◽  
Lin Ding

Signals of uplift and deformation across the Tibetan Plateau associated with the Cenozoic India-Asia collision can be used to test debated deformation mechanism(s) and the growth history of the plateau. The spatio-temporal evolution of the Eastern Kunlun Range in northern Tibet provides a window for understanding the intracontinental tectonic evolution of the region. The Eastern Kunlun Range exposes the Cenozoic Kunlun left-slip fault and kinematically linked thrust belts. In this contribution, integrated field observations and apatite fission-track thermochronology were conducted to constrain the initiation ages of localized thrust faults and the exhumation history of the Eastern Kunlun Range. Our analyses reveal four stages of cooling of the Eastern Kunlun Range. We relate these four stages to the following interpreted tectonic evolution: (1) an initial period of early Cretaceous cooling and slow exhumation over the early Cenozoic, which is associated with the formation of a regional unconformity observed between Cretaceous strata and early Cenozoic sediments; (2) rapid Oligocene cooling that occurred at the eastern domain of the Eastern Kunlun Range related to the southern Qaidam thrusts; (3) extensive rapid cooling since the early-middle Miocene in most of the eastern-central domains and significant uplift of the entire range; and (4) a final pulse of rapid late Miocene-to-present cooling associated with the initiation of the Kunlun left-slip fault and dip-slip shortening at the western and eastern termination of the left-slip fault. Early Cenozoic deformation was distributed along the northern extent of the Tibetan Plateau, and overprinting out-of-sequence deformation migrated back to the south with the initiation of Miocene-to-present deformation in the Eastern Kunlun Range.


Sign in / Sign up

Export Citation Format

Share Document