uplift history
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 28)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Richard A. Ellison ◽  
Robert J. Thomas ◽  
Joachim Jacobs ◽  
Timothy C. Pharaoh

2021 ◽  
Vol 9 ◽  
Author(s):  
Emma O. Heitmann ◽  
Ethan G. Hyland ◽  
Philip Schoettle-Greene ◽  
Cassandra A. P. Brigham ◽  
Katharine W. Huntington

The Colorado Plateau’s complex landscape has motivated over a century of debate, key to which is understanding the timing and processes of surface uplift of the greater Colorado Plateau region, and its interactions with erosion, drainage reorganization, and landscape evolution. Here, we evaluate what is known about the surface uplift history from prior paleoelevation estimates from the region by synthesizing and evaluating estimates 1) in context inferred from geologic, geomorphic, and thermochronologic constraints, and 2) in light of recent isotopic and paleobotanical proxy method advancements. Altogether, existing data and estimates suggest that half-modern surface elevations were attained by the end of the Laramide orogeny (∼40 Ma), and near-modern surface elevations by the mid-Miocene (∼16 Ma). However, our analysis of paleoelevation proxy methods highlights the need to improve proxy estimates from carbonate and floral archives including the ∼6–16 Ma Bidahochi and ∼34 Ma Florissant Formations and explore understudied (with respect to paleoelevation) Laramide basin deposits to fill knowledge gaps. We argue that there are opportunities to leverage recent advancements in temperature-based paleoaltimetry to refine the surface uplift history; for instance, via systematic comparison of clumped isotope and paleobotanical thermometry methods applied to lacustrine carbonates that span the region in both space and time, and by use of paleoclimate model mediated lapse rates in paleoelevation reconstruction.


2021 ◽  
Author(s):  
Chihao Chen ◽  
Yan Bai ◽  
Xiaomin Fang ◽  
Haichao Guo ◽  
Weilin Zhang ◽  
...  

<p>As an important driver of global climate change during the Cenozoic, the uplift of the Tibetan Plateau (TP) has strongly influenced the origination and evolution of the Asian monsoon system, and therefore the aridification of central Asia. Over the last two decades, the application of stable isotope paleoaltimeters and the discoveries of mammal and plant fossils have greatly promoted the understanding of the uplift history of the TP. However, paleoaltitudinal reconstructions based on different paleoaltimeters have suggested differing outcomes and therefore remain controversial. Novel paleoaltimeters have therefore needed to be developed and applied to constrain the uplift history of the TP more accurately and effectively by comparing and verifying multi-proxies. Paleothermometers based on glyceryl dialkyl glycerol tetraethers (GDGTs) are widely used in terrestrial and ocean temperature reconstructions. In this study, GDGT-based paleothermometers were tentatively applied to the Gyirong Basin on the southern TP, and the Xining Basins on the northern TP, in an attempt to quantitatively reconstruct their paleoaltitudes.</p><p>Both soil and aquatic-typed branched GDGTs have been identified from Late Miocene to Mid-Pliocene (7.0-3.2 Ma) samples taken from the Gyirong Basin; their reconstructed paleotemperatures were 7.5±3.3°C and 14.2±4.5°C, respectively. The former temperature may represent the mean temperature of the terrestrial organic matter input area, while the latter may represent the lake surface temperature. The results would suggest that the lake surface of the Gyirong Basin during the Late Miocene to Mid-Pliocene was 2.5±0.8 km and that the surrounding mountains exceeded 3.6±0.6 km, implying that the central Himalayas underwent a rapid uplift of ~1.5 km after the Mid-Pliocene.</p><p>GDGT-based paleotemperature reconstructions using MBT'<sub>5ME</sub> values show that the Xining Basin dropped in temperature by ~10°C during the ~10.5-8 Ma period, exceeding that in sea surface temperatures and low-altitude terrestrial temperatures during these periods. By combining these results with contemporaneous tectonic and sedimentary records, we infer that these cooling events signaled the regional uplift with the amplitude of ~1 km of the Xining basins. Our results support that the TP was still growing and uplifting substantially since the Late Miocene, which may provide new evidence for understanding the growth, expansion and uplift patterns of the TP.</p>


2020 ◽  
Vol 552 ◽  
pp. 116593 ◽  
Author(s):  
Scott Jess ◽  
Daniel Koehn ◽  
Matthew Fox ◽  
Eva Enkelmann ◽  
Till Sachau ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 67-92
Author(s):  
Eduardo López- Ramos

The subsidence and uplift history of the forearc system of southwestern Colombia and northern Ecuador margin is complex and reveals several stages of deformation. The sequential stratigraphy of the forearc area shows the development of three megasequences (M1 to M3). The basal megasequence corresponds to the basement of the forearc, which was formed at the end of the Mesozoic and at the beginning of the Cenozoic and accreted against the Northwestern part of South America related to the accretion of the Late Cretaceous – Paleoceneoceanic plateau. This accretion occurred in a transpressional regime. The second megasequence is composed by deep water sediments, recording the transition between transpressional to compressional stages of the margin from the Late Eocene to the Middle Miocene. The third megasequence is characterized by shallow water sediments strongly constrained by the compressional stage of the margin and the uplift activity of the structural highs since the Late Miocene up to present. The structural geometry of the margin is characterized by basement thrusts that deformed the forearc crust. Westward, the forearc zone -according to the support of the overriding plate -is divided into mantle wedge and lower plate domains. The margin evolution suggests that the subducting plate geodynamical changes affect strongly the interplate coupling and mantle wedge and produce changes in the subsidence or uplift through the double forearc basin systems.


2020 ◽  
Vol 320 (6) ◽  
pp. 479-532
Author(s):  
Miquela Ingalls ◽  
David B. Rowley ◽  
Brian S. Currie ◽  
Albert S. Colman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document