Effect of fire on benthic algal assemblage structure and recolonization in intermittent streams

2006 ◽  
Vol 31 (6) ◽  
pp. 696-707 ◽  
Author(s):  
AMANDA L. COWELL ◽  
TY G. MATTHEWS ◽  
PETER R. LIND
2021 ◽  
Author(s):  
◽  
Bionda Morelissen

<p>The introduction of non-native species and the alteration of seawater nutrient regimes due to anthropogenic impacts are two important threats to marine environments. Moreover, these disturbances may interact in such a way that promotes the success of invasive species in coastal habitats. This thesis contributes to current gaps in knowledge in these areas for low-intertidal communities. Algal community dynamics and ecological effects of the invasive kelp Undaria pinnatifida on low shores in the Wellington region, New Zealand, were examined, using field surveys and experiments. In addition, the role of variability in nutrient concentrations in coastal waters in mediating algal community structure and diversity, and the success of U. pinnatifida reproduction were investigated. Algal surveys were used in two locations thought to differ in nutrient regimes, the Wellington Harbour and the Wellington south coast, to explore the structure and dynamics of algal assemblages. Results showed high variability of low-intertidal algal communities among sites, but no consistent differences in algal community composition were found between the two locations, despite higher U. pinnatifida cover in the harbour. Over the duration of the study, nutrient regimes did not differ greatly between the locations. The response of rocky intertidal algal assemblages to chronic exposure to high nutrient effluent was investigated using two nearshore sewage outfalls in the Wellington region. The Titahi Bay outfall showed a stronger relationship between nutrients and algal community composition. Variation in algal assemblage structure and diversity was best explained by phosphate concentrations. By contrast, at the more wave-exposed Pencarrow outfall, patterns of change in the algal community were less clear and there was a much weaker relationship with seawater nutrients. Because removal of native algal canopy species may facilitate the establishment of invasive macroalgae, the invasion process of U. pinnatifida in disturbed patches in a rocky low-intertidal habitat was investigated. In a site where U. pinnatifida had not yet established, patches were scraped clear of native algal cover at two different times of year, and recruitment of U. pinnatifida was monitored. While U. pinnatifida invaded the site, it recruited in control plots at a similar rate as cleared plots, suggesting that physical disturbance of the native algal assemblage is not a key requirement for this kelp to invade and establish in new areas in the low intertidal zone. The response of native algal assemblages to removal of U. pinnatifida individuals was investigated at intertidal sites in the Wellington Harbour and on the south coast. No significant effect of U. pinnatifida on community composition, diversity, and species richness was detected. Removal of this invader did not change native intertidal assemblage structure in either harbour or south coast sites. Lastly, effects of different nutrient regimes and light intensities on early development and reproduction of U. pinnatifida were studied using a laboratory experiment. Under low light conditions U. pinnatifida gametophyte growth and reproduction stalled and was not increased by the addition of nutrients. However, at medium and high light levels, gametophyte growth and reproduction, and particularly early stage sporophyte growth rates increased when exposed to higher nutrient concentrations.These effects could have implications for U. pinnatifida population dynamics in intertidal habitats where light is not often a limiting resource. This research contributed to a better understanding of factors that underlie invasion dynamics, distribution, and ecological effects of U. pinnatifida and seawater nutrient regimes on low-intertidal assemblages in the Wellington region. The outcomes can assist in setting up strategic environmental protection and conservation plans.</p>


2021 ◽  
Author(s):  
◽  
Bionda Morelissen

<p>The introduction of non-native species and the alteration of seawater nutrient regimes due to anthropogenic impacts are two important threats to marine environments. Moreover, these disturbances may interact in such a way that promotes the success of invasive species in coastal habitats. This thesis contributes to current gaps in knowledge in these areas for low-intertidal communities. Algal community dynamics and ecological effects of the invasive kelp Undaria pinnatifida on low shores in the Wellington region, New Zealand, were examined, using field surveys and experiments. In addition, the role of variability in nutrient concentrations in coastal waters in mediating algal community structure and diversity, and the success of U. pinnatifida reproduction were investigated. Algal surveys were used in two locations thought to differ in nutrient regimes, the Wellington Harbour and the Wellington south coast, to explore the structure and dynamics of algal assemblages. Results showed high variability of low-intertidal algal communities among sites, but no consistent differences in algal community composition were found between the two locations, despite higher U. pinnatifida cover in the harbour. Over the duration of the study, nutrient regimes did not differ greatly between the locations. The response of rocky intertidal algal assemblages to chronic exposure to high nutrient effluent was investigated using two nearshore sewage outfalls in the Wellington region. The Titahi Bay outfall showed a stronger relationship between nutrients and algal community composition. Variation in algal assemblage structure and diversity was best explained by phosphate concentrations. By contrast, at the more wave-exposed Pencarrow outfall, patterns of change in the algal community were less clear and there was a much weaker relationship with seawater nutrients. Because removal of native algal canopy species may facilitate the establishment of invasive macroalgae, the invasion process of U. pinnatifida in disturbed patches in a rocky low-intertidal habitat was investigated. In a site where U. pinnatifida had not yet established, patches were scraped clear of native algal cover at two different times of year, and recruitment of U. pinnatifida was monitored. While U. pinnatifida invaded the site, it recruited in control plots at a similar rate as cleared plots, suggesting that physical disturbance of the native algal assemblage is not a key requirement for this kelp to invade and establish in new areas in the low intertidal zone. The response of native algal assemblages to removal of U. pinnatifida individuals was investigated at intertidal sites in the Wellington Harbour and on the south coast. No significant effect of U. pinnatifida on community composition, diversity, and species richness was detected. Removal of this invader did not change native intertidal assemblage structure in either harbour or south coast sites. Lastly, effects of different nutrient regimes and light intensities on early development and reproduction of U. pinnatifida were studied using a laboratory experiment. Under low light conditions U. pinnatifida gametophyte growth and reproduction stalled and was not increased by the addition of nutrients. However, at medium and high light levels, gametophyte growth and reproduction, and particularly early stage sporophyte growth rates increased when exposed to higher nutrient concentrations.These effects could have implications for U. pinnatifida population dynamics in intertidal habitats where light is not often a limiting resource. This research contributed to a better understanding of factors that underlie invasion dynamics, distribution, and ecological effects of U. pinnatifida and seawater nutrient regimes on low-intertidal assemblages in the Wellington region. The outcomes can assist in setting up strategic environmental protection and conservation plans.</p>


2016 ◽  
Vol 547 ◽  
pp. 177-192 ◽  
Author(s):  
AR Thompson ◽  
JR Hyde ◽  
W Watson ◽  
DC Chen ◽  
LW Guo

2019 ◽  
Vol 25 (11) ◽  
pp. 3871-3882 ◽  
Author(s):  
Rong Wang ◽  
John A. Dearing ◽  
C. Patrick Doncaster ◽  
Xiangdong Yang ◽  
Enlou Zhang ◽  
...  

Diversity ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 9
Author(s):  
Alexandra Grossi ◽  
Heather Proctor

When a species colonizes a new area, it has the potential to bring with it an array of smaller-bodied symbionts. Rock Pigeons (Columba livia Gmelin) have colonized most of Canada and are found in almost every urban center. In its native range, C. livia hosts more than a dozen species of ectosymbiotic arthropods, and some of these lice and mites have been reported from Rock Pigeons in the United States. Despite being so abundant and widely distributed, there are only scattered host-symbiont records for rock pigeons in Canada. Here we sample Rock Pigeons from seven locations across Canada from the west to east (a distance of > 4000 km) to increase our knowledge of the distribution of their ectosymbionts. Additionally, because ectosymbiont abundance can be affected by temperature and humidity, we looked at meteorological variables for each location to assess whether they were correlated with ectosymbiont assemblage structure. We found eight species of mites associated with different parts of the host’s integument: the feather dwelling mites Falculifer rostratus (Buchholz), Pterophagus columbae (Sugimoto) and Diplaegidia columbae (Buchholz); the skin mites: Harpyrhynchoides gallowayi Bochkov, OConnor and Klompen, H. columbae (Fain), and Ornithocheyletia hallae Smiley; and the nasal mites Tinaminyssus melloi (Castro) and T. columbae (Crossley). We also found five species of lice: Columbicola columbae (Linnaeus), Campanulotes compar (Burmeister), Coloceras tovornikae Tendeiro, Hohorstiella lata Piaget, and Bonomiella columbae Emerson. All 13 ectosymbiont species were found in the two coastal locations of Vancouver (British Columbia) and Halifax (Nova Scotia). The symbiont species found in all sampling locations were the mites O. hallae, H. gallowayi, T. melloi and T. columbae, and the lice Colu. columbae and Camp. compar. Three local meteorological variables were significantly correlated with mite assemblage structure: annual minimum and maximum temperatures and maximum humidity in the month the pigeon was collected. Two local meteorological variables, annual maximum and average temperatures, were significantly correlated with louse assemblages. Our results suggest that milder climatic conditions may affect richness and assemblage structure of ectosymbiont assemblages associated with Rock Pigeons in Canada.


Sign in / Sign up

Export Citation Format

Share Document