Projection field of primary afferent fibers innervating the ventral portion of the lumbar intervertebral disc in the spinal cord dorsal horn

2006 ◽  
Vol 81 (2) ◽  
pp. 92-99 ◽  
Author(s):  
Yuzuru Takahashi ◽  
Yasuchika Aoki ◽  
Hideo Douya ◽  
Seiji Ohtori ◽  
Kazuhisa Takahashi
2021 ◽  
Vol 22 (1) ◽  
pp. 414
Author(s):  
Antonella Comitato ◽  
Rita Bardoni

Sensory primary afferent fibers, conveying touch, pain, itch, and proprioception, synapse onto spinal cord dorsal horn neurons. Primary afferent central terminals express a wide variety of receptors that modulate glutamate and peptide release. Regulation of the amount and timing of neurotransmitter release critically affects the integration of postsynaptic responses and the coding of sensory information. The role of GABA (γ-aminobutyric acid) receptors expressed on afferent central terminals is particularly important in sensory processing, both in physiological conditions and in sensitized states induced by chronic pain. During the last decade, techniques of opto- and chemogenetic stimulation and neuronal selective labeling have provided interesting insights on this topic. This review focused on the recent advances about the modulatory effects of presynaptic GABAergic receptors in spinal cord dorsal horn and the neural circuits involved in these mechanisms.


2021 ◽  
Author(s):  
Yajing Xu ◽  
Stephanie Koch ◽  
Alexander Chamessian ◽  
Qianru He ◽  
Mayya Sundukova ◽  
...  

In the spinal cord dorsal horn, sensory circuits undergo remarkable postnatal reorganisation, including refinement of primary afferent A-fibres in the superficial layers, accompanied by decreased cutaneous sensitivity. Here we show a physiological role of microglia necessary for normal development of dorsal horn sensory circuits and tactile sensitivity. In the absence of microglial engulfment, superfluous A-fibre projections persist, leading to lifelong hypersensitivity to dynamic touch.


2020 ◽  
Vol 16 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Jin-Rong He ◽  
Shu-Guang Yu ◽  
Yong Tang ◽  
Peter Illes

Abstract This review summarizes experimental evidence indicating that purinergic mechanisms are causally involved in acupuncture (AP)-induced analgesia. Electroacupuncture (EAP) and manual AP release at pain-relevant acupoints ATP which may activate purinergic P2X receptors (Rs) especially of the P2X3 type situated at local sensory nerve endings (peripheral terminals of dorsal root ganglion [DRG] neurons); the central processes of these neurons are thought to inhibit via collaterals of ascending dorsal horn spinal cord neurons, pain-relevant pathways projecting to higher centers of the brain. In addition, during AP/EAP non-neuronal P2X4 and/or P2X7Rs localized at microglial cells of the CNS become activated at the spinal or supraspinal levels. In consequence, these microglia secrete bioactive compounds such as growth factors, cytokines, chemokines, reactive oxygen, and nitrogen species, which modulate the ascending neuronal pathways conducting painful stimuli. Alternatively, ATP released at acupoints by AP/EAP may be enzymatically degraded to adenosine, stimulating in loco presynaptic A1Rs exerting an inhibitory influence on the primary afferent fibers (the above mentioned pain-sensing peripheral terminals of DRG neurons) which thereby fail to conduct action potentials to the spinal cord dorsal horn. The net effect of the stimulation of P2X3, P2X4, P2X7, and A1Rs by the AP/EAP-induced release of ATP/adenosine at certain acupoints will be analgesia.


1998 ◽  
Vol 80 (6) ◽  
pp. 3356-3360 ◽  
Author(s):  
Ping Li ◽  
Amelita A. Calejesan ◽  
Min Zhuo

Li, Ping, Amelita A. Calean, and Min Zhuo. ATP P2× receptors and sensory synaptic transmission between primary afferent fibers and spinal dorsal horn neurons in rats. J. Neurophysiol. 80: 3356–3360, 1998. Glutamate is a major fast transmitter between primary afferent fibers and dorsal horn neurons in the spinal cord. Recent evidence indicates that ATP acts as another fast transmitter at the rat cervical spinal cord and is proposed to serve as a transmitter for nociception and pain. Sensory synaptic transmission between dorsal root afferent fibers and neurons in the superficial dorsal horn of the lumbar spinal cord were examined by whole cell patch-clamp recording techniques. Experiments were designed to test if ATP could serve as a transmitter at the lumbar spinal cord. Monosynaptic excitatory postsynaptic currents (EPSCs) were completely abolished after the blockade of both glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate and N-methyl-d-aspartate receptors. No residual current was detected, indicating that glutamate but not ATP is a fast transmitter at the dorsal horn of the lumbar spinal cord. Pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), a selective P2× receptor antagonist, produced an inhibitory modulatory effect on fast EPSCs and altered responses to paired-pulse stimulation, suggesting the involvement of a presynaptic mechanism. Intrathecal administration of PPADS did not produce any antinociceptive effect in two different types of behavioral nociceptive tests. The present results suggest that ATP P2×2 receptors modulate excitatory synaptic transmission in the superficial dorsal horn of the lumbar spinal cord by a presynaptic mechanism, and such a mechanism does not play an important role in behavioral responses to noxious heating. The involvement of other P2× subtype receptors, which is are less sensitive to PPADS, in acute nociceptive modulation and persistent pain remains to be investigated.


1991 ◽  
Vol 11 (1) ◽  
pp. 298-309 ◽  
Author(s):  
PB Brown ◽  
WE Gladfelter ◽  
JC Culberson ◽  
D Covalt-Dunning ◽  
RV Sonty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document