conditioning stimulation
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 19)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 11 (11) ◽  
pp. 1494
Author(s):  
Sho Kojima ◽  
Shota Miyaguchi ◽  
Hirotake Yokota ◽  
Kei Saito ◽  
Yasuto Inukai ◽  
...  

Motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS) a few milliseconds after this cortical activity following electrical stimulation (ES) result in an inhibition comparable to that by TMS alone; this is called short-latency afferent inhibition (SAI). Cortical activity is observed after mechanical tactile stimulation (MS) and is affected by the number of stimuli by ES. We determined the effects of somatosensory stimulus methods and multiple conditioning stimuli on SAI in 19 participants. In experiment 1, the interstimulus intervals between the conditioning stimulation and TMS were 25, 27 and 29 ms for ES and 28, 30 and 32 ms for MS. In experiment 2, we used 1, 2, 3 and 4 conditioning stimulations of ES and MS. The interstimulus interval between the ES or MS and TMS was 27 or 30 ms, respectively. In experiment 1, MEPs were significantly decreased in both the ES and MS conditions. In experiment 2, MEPs after ES were significantly decreased in all conditions. Conversely, MEPs after MS were significantly decreased after one stimulus and increased after four stimulations, indicating the SAI according to the number of stimuli. Therefore, the somatosensory stimulus methods and multiple conditioning stimuli affected the SAI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dawid Łochyński ◽  
Dominik Kaczmarek ◽  
Marcin Grześkowiak ◽  
Joanna Majerczak ◽  
Tomasz Podgórski ◽  
...  

Post-tetanic potentiation (PTP) of force depends on intramuscular Ca2+ levels and sensitivity and may be affected by fatigue. The aim of this study was to determine the ability of isolated fast fatigue-resistant (FR) and fast-fatigable (FF) motor units (MUs) to potentiate force evoked with single and 40-Hz electrical stimulation after 5 weeks of voluntary weight-lifting training. Tetanic contractions evoked by gradually increasing (10–150 Hz) stimulation frequency served as conditioning stimulation. Additionally, the concentration of myosin light chain kinase and proteins engaged in calcium handling was measured in rat fast medial gastrocnemius muscle. After the training, the potentiation of twitch force and peak rate of force development was increased in FF but not FR MUs. Force potentiation of 40-Hz tetanic contractions was increased in both fast MU types. After the training, the twitch duration of FR MUs was decreased, and FF MUs were less prone to high-frequency fatigue during conditioning stimulation. Muscle concentration of triadin was increased, whereas concentrations of ryanodine receptor 1, junctin, FKBP12, sarcoplasmic reticulum calcium ATPase 1, parvalbumin, myosin light chain kinase, and actomyosin adenosine triphosphatase content were not modified. After short-term resistance training, the twitch contraction time and twitch:tetanus force ratio of FR MUs are decreased, and PTP ability is not changed. However, PTP capacity is increased in response to submaximal activation. In FF MUs increase in PTP ability coexists with lesser fatigability. Further work is required to find out if the increase in triadin concentration has any impact on the observed contractile response.


2020 ◽  
Vol 732 ◽  
pp. 135052
Author(s):  
Md. Anamul Islam ◽  
Morad Zaaya ◽  
Erin Comiskey ◽  
Joseph Demetrio ◽  
Amanda O’Keefe ◽  
...  

2019 ◽  
Vol 122 (3) ◽  
pp. 994-1001 ◽  
Author(s):  
E. N. van den Broeke ◽  
S. Gousset ◽  
J. Bouvy ◽  
A. Stouffs ◽  
L. Lebrun ◽  
...  

High-frequency burstlike electrical conditioning stimulation (HFS) applied to human skin induces an increase in mechanical pinprick sensitivity of the surrounding unconditioned skin (a phenomenon known as secondary hyperalgesia). The present study assessed the effect of frequency of conditioning stimulation on the development of this increased pinprick sensitivity in humans. In a first experiment, we compared the increase in pinprick sensitivity induced by HFS, using monophasic non-charge-compensated pulses and biphasic charge-compensated pulses. High-frequency stimulation, traditionally delivered with non-charge-compensated square-wave pulses, may induce a cumulative depolarization of primary afferents and/or changes in pH at the electrode-tissue interface due to the accumulation of a net residue charge after each pulse. Both could contribute to the development of the increased pinprick sensitivity in a frequency-dependent fashion. We found no significant difference in the increase in pinprick sensitivity between HFS delivered with charge-compensated and non-charge-compensated pulses, indicating that the possible contribution of charge accumulation when non-charge-compensated pulses are used is negligible. In a second experiment, we assessed the effect of different frequencies of conditioning stimulation (5, 20, 42, and 100 Hz) using charge-compensated pulses on the development of increased pinprick sensitivity. The maximal increase in pinprick sensitivity was observed at intermediate frequencies of stimulation (20 and 42 Hz). It is hypothesized that the stronger increase in pinprick sensitivity at intermediate frequencies may be related to the stronger release of substance P and/or neurokinin-1 receptor activation expressed at lamina I neurons after C-fiber stimulation. NEW & NOTEWORTHY Burstlike electrical conditioning stimulation applied to human skin induces an increase in pinprick sensitivity in the surrounding unconditioned skin (a phenomenon referred to as secondary hyperalgesia). Here we show that the development of the increase in pinprick sensitivity is dependent on the frequency of the burstlike electrical conditioning stimulation.


Sign in / Sign up

Export Citation Format

Share Document