Human Motor Planning, Motor Programming, and Use of New Task-relevant Information with Different Apraxic Syndromes

1995 ◽  
Vol 7 (7) ◽  
pp. 1536-1547 ◽  
Author(s):  
T. Platz ◽  
K.-H. Mauritz
2021 ◽  
Author(s):  
Colombine Verzat ◽  
Jasmine Harley ◽  
Rickie Patani ◽  
Raphaëlle Luisier

SUMMARYAlthough morphological attributes of cells and their substructures are recognized readouts of physiological or pathophysiological states, these have been relatively understudied in amyotrophic lateral sclerosis (ALS) research. In this study we integrate multichannel fluorescence high-content microscopy data with deep-learning imaging methods to reveal - directly from unsegmented images - novel neurite-associated morphological perturbations associated with (ALS-causing) VCP-mutant human motor neurons (MNs). Surprisingly, we reveal that previously unrecognized disease-relevant information is withheld in broadly used and often considered ‘generic’ biological markers of nuclei (DAPI) and neurons (βIII-tubulin). Additionally, we identify changes within the information content of ALS-related RNA binding protein (RBP) immunofluorescence imaging that is captured in VCP-mutant MN cultures. Furthermore, by analyzing MN cultures exposed to different extrinsic stressors, we show that heat stress recapitulates key aspects of ALS. Our study therefore reveals disease-relevant information contained in a range of both generic and more specific fluorescent markers, and establishes the use of image-based deep learning methods for rapid, automated and unbiased testing of biological hypotheses.


2016 ◽  
Vol 116 (2) ◽  
pp. 296-305 ◽  
Author(s):  
Aaron L. Wong ◽  
Jeff Goldsmith ◽  
John W. Krakauer

Interactions with our environment require curved movements that depend not only on the final position of the hand but also on the path used to achieve it. Current studies in motor control, however, largely focus on point-to-point movements and do not consider how movements with specific desired trajectories might arise. In this study, we examined intentionally curved reaching movements that navigate paths around obstacles. We found that the preparation of these movements incurred a large reaction-time cost. This cost could not be attributed to nonmotor task requirements (e.g., stimulus perception) and was independent of the execution difficulty (i.e., extent of curvature) of the movement. Additionally, this trajectory representation cost was not observed for point-to-point reaches but could be optionally included if the task encouraged consideration of straight trajectories. Therefore, when the path of a movement is task relevant, the shape of the desired trajectory is overtly represented as a stage of motor planning. This trajectory representation ability may help explain the vast repertoire of human motor behaviors.


2016 ◽  
Vol 28 (7) ◽  
pp. 1039-1051 ◽  
Author(s):  
Elizabeth Heinrichs-Graham ◽  
David J. Arpin ◽  
Tony W. Wilson

In humans, there is a strong beta (15–30 Hz) event-related desynchronization (ERD) that begins before movement, which has been tentatively linked to motor planning operations. The dynamics of this response are strongly modulated by whether a pending movement is cued and the inherent parameters of the cue. However, previous studies have focused on the information content of cues and not on parameters such as the timing of the cue relative to other events. Variations in such timing are critical, as they directly impact the amount of time that participants have to plan pending movements. In this study, participants performed finger-tapping sequences during magnetoencephalography, and we manipulated the amount of time (i.e., “long” vs. “short”) between the presentation of the to-be-executed sequence and the cue to initiate the sequence. We found that the beta ERD was stronger immediately after the cue to move in the contralateral postcentral gyrus and bilateral parietal cortices during the short compared with long planning time condition. During movement execution, the beta ERD was stronger in the premotor cortex and the SMA in the short relative to long condition. Finally, peak latency in the SMA significantly correlated with RT, such that the closer the peak beta ERD was to the cue to move, the quicker the participant responded. The results of this study establish that peri-movement beta ERD activity across the cortical motor circuit is highly sensitive to cue-related temporal factors, with a direct link to motor performance.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
G. Ganesh ◽  
T. Yoshioka ◽  
R. Osu ◽  
T. Ikegami
Keyword(s):  

2010 ◽  
Vol 68 ◽  
pp. e266
Author(s):  
Takahiro Fujita ◽  
Takeshi Nakayama ◽  
Masazumi Katayama

2009 ◽  
Vol 27 (1) ◽  
pp. E9 ◽  
Author(s):  
Spencer S. Kellis ◽  
Paul A. House ◽  
Kyle E. Thomson ◽  
Richard Brown ◽  
Bradley Greger

Object The goal of this study was to determine whether a nonpenetrating, high-density microwire array could provide sufficient information to serve as the interface for decoding motor cortical signals. Methods Arrays of nonpenetrating microwires were implanted over the human motor cortex in 2 patients. The patients performed directed stereotypical reaching movements in 2 directions. The resulting data were used to determine whether the reach direction could be distinguished through a frequency power analysis. Results Correlation analysis revealed decreasing signal correlation with distance. The gamma-band power during motor planning allowed binary classification of gross directionality in the reaching movements. The degree of power change was correlated to the underlying gyral pattern. Conclusions The nonpenetrating microwire platform showed good potential for allowing differentiated signals to be recorded with high spatial fidelity without cortical penetration.


Sign in / Sign up

Export Citation Format

Share Document