Dopamine desynchronizes the pace-making neuronal activity of rat respiratory rhythm generation

2006 ◽  
Vol 23 (4) ◽  
pp. 1015-1027 ◽  
Author(s):  
Morimitsu Fujii ◽  
Kazuo Umezawa ◽  
Akiko Arata
2021 ◽  
Author(s):  
Ryan S Phillips ◽  
Jonathan E Rubin

Inspiratory breathing rhythms arise from synchronized neuronal activity in a bilaterally distributed brainstem structure known as the preBötzinger complex (preBötC). In in vitro slice preparations containing the preBötC, extracellular potassium must be elevated above physiological levels (to 7-9mM) to observe regular rhythmic respiratory motor output in the hypoglossal nerve to which the preBötC projects. Reexamination of how extracellular K+ affects preBötC neuronal activity has revealed that low amplitude oscillations persist at physiological levels. These oscillatory events are sub-threshold from the standpoint of transmission to motor output and are dubbed burstlets. Burstlets arise from synchronized neural activity in a rhythmogenic neuronal subpopulation within the preBötC that in some instances may fail to recruit the larger network events, or bursts, required to generate motor output. The fraction of subthreshold preBötC oscillatory events (burstlet fraction) decreases sigmoidally with increasing extracellular potassium. These observations underlie the burstlet theory of respiratory rhythm generation. Experimental and computational studies have suggested that recruitment of the non-rhythmogenic component of the preBötC population requires intracellular Ca2+ dynamics and activation of a calcium-activated non-selective cationic current. In this computational study, we show how intracellular calcium dynamics driven by synaptically triggered Ca2+ influx as well as Ca2+ release/uptake by the endoplasmic reticulum in conjunction with a calcium-activated non-selective cationic current can explain all of the key observations underlying the burstlet theory of respiratory rhythm generation. Thus, we provide a mechanistic basis to unify the experimental findings on rhythm generation and motor output recruitment in the preBötC.


1999 ◽  
Vol 82 (1) ◽  
pp. 382-397 ◽  
Author(s):  
Robert J. Butera ◽  
John Rinzel ◽  
Jeffrey C. Smith

A network of oscillatory bursting neurons with excitatory coupling is hypothesized to define the primary kernel for respiratory rhythm generation in the pre-Bötzinger complex (pre-BötC) in mammals. Two minimal models of these neurons are proposed. In model 1, bursting arises via fast activation and slow inactivation of a persistent Na+ current I NaP-h. In model 2, bursting arises via a fast-activating persistent Na+ current INaP and slow activation of a K+ current IKS. In both models, action potentials are generated via fast Na+ and K+currents. The two models have few differences in parameters to facilitate a rigorous comparison of the two different burst-generating mechanisms. Both models are consistent with many of the dynamic features of electrophysiological recordings from pre-BötC oscillatory bursting neurons in vitro, including voltage-dependent activity modes (silence, bursting, and beating), a voltage-dependent burst frequency that can vary from 0.05 to >1 Hz, and a decaying spike frequency during bursting. These results are robust and persist across a wide range of parameter values for both models. However, the dynamics of model 1 are more consistent with experimental data in that the burst duration decreases as the baseline membrane potential is depolarized and the model has a relatively flat membrane potential trajectory during the interburst interval. We propose several experimental tests to demonstrate the validity of either model and to differentiate between the two mechanisms.


2006 ◽  
Vol 24 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Ming-Gao Zhao ◽  
Swen Hülsmann ◽  
Stefan M. Winter ◽  
Mathias Dutschmann ◽  
Diethelm W. Richter

Sign in / Sign up

Export Citation Format

Share Document