prebotzinger complex
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 36)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ryan S Phillips ◽  
Jonathan E Rubin

Inspiratory breathing rhythms arise from synchronized neuronal activity in a bilaterally distributed brainstem structure known as the preBötzinger complex (preBötC). In in vitro slice preparations containing the preBötC, extracellular potassium must be elevated above physiological levels (to 7-9mM) to observe regular rhythmic respiratory motor output in the hypoglossal nerve to which the preBötC projects. Reexamination of how extracellular K+ affects preBötC neuronal activity has revealed that low amplitude oscillations persist at physiological levels. These oscillatory events are sub-threshold from the standpoint of transmission to motor output and are dubbed burstlets. Burstlets arise from synchronized neural activity in a rhythmogenic neuronal subpopulation within the preBötC that in some instances may fail to recruit the larger network events, or bursts, required to generate motor output. The fraction of subthreshold preBötC oscillatory events (burstlet fraction) decreases sigmoidally with increasing extracellular potassium. These observations underlie the burstlet theory of respiratory rhythm generation. Experimental and computational studies have suggested that recruitment of the non-rhythmogenic component of the preBötC population requires intracellular Ca2+ dynamics and activation of a calcium-activated non-selective cationic current. In this computational study, we show how intracellular calcium dynamics driven by synaptically triggered Ca2+ influx as well as Ca2+ release/uptake by the endoplasmic reticulum in conjunction with a calcium-activated non-selective cationic current can explain all of the key observations underlying the burstlet theory of respiratory rhythm generation. Thus, we provide a mechanistic basis to unify the experimental findings on rhythm generation and motor output recruitment in the preBötC.


2021 ◽  
Author(s):  
Prajkta Shashikant Kallurkar ◽  
Maria Cristina Picardo ◽  
Yae Sugimura ◽  
Margaret A Saha ◽  
Gregory Douglas Conradi Smith ◽  
...  

Breathing depends on interneurons in the preBötzinger complex (preBötC) derived from Dbx1-expressing precursors. Here we investigate whether rhythm- and pattern-generating functions reside in discrete classes of Dbx1 preBötC neurons. In a slice model of breathing with ~5 s cycle period, putatively rhythmogenic Type-1 Dbx1 preBötC neurons activate 100-300 ms prior to Type-2 neurons, putatively specialized for output pattern, and 300-500 ms prior to the inspiratory motor output. We sequenced Type-1 and Type-2 transcriptomes and identified differential expression of 123 genes including ionotropic receptors (Gria3 and Gabra1) that may explain their preinspiratory activation profiles and Ca2+ signaling (Cracr2a, Sgk1) involved in inspiratory and sigh bursts. Surprisingly, neuropeptide receptors that influence breathing (e.g., μ-opioid and bombesin-like peptide receptors) were only sparsely expressed, which suggests that cognate peptides and opioid drugs exert their profound effects on a small fraction of the preBötC core. These data in the public domain help explain the neural origins of breathing.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Ana Miranda Tapia ◽  
Vivian Biancardi ◽  
Robert Reklow ◽  
Wei Zhang ◽  
Vladimir Rancic ◽  
...  

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Prajkta Kallurkar ◽  
Maria Cristina Picardo ◽  
Yae Sugimura ◽  
Gregory Conradi Smith ◽  
Margaret Saha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document