Motion Processing Deficits in Migraine

Cephalalgia ◽  
2004 ◽  
Vol 24 (5) ◽  
pp. 363-372 ◽  
Author(s):  
AM McKendrick ◽  
DR Badcock

This study was designed to determine whether cortical motion processing abnormalities are present in individuals with migraine. Performance was measured using a visual motion coherence task (motion coherence perimetry, MCP) thought to depend on the operation of cortical area V5. Motion coherence thresholds were measured using stimuli composed of moving dots at 17 locations in the central ± 20° of visual field. Pre-cortical visual function was also measured using frequency doubling perimetry (FDP) at the same 17 locations. Several migraine subjects demonstrated significant pre-cortical visual functional abnormalities, however, most subjects had normal visual fields measured with FDP. Abnormal MCP performance was measured in 15 of 19 migraine-with-aura subjects, and 11 of 17 migraine-without-aura subjects. A decreased ability to detect coherent motion may possibly be explained by an increase in baseline neuronal noise, such as would be consistent with the concept of cortical hyperexcitability in migraine.

1996 ◽  
Vol 13 (4) ◽  
pp. 615-626 ◽  
Author(s):  
David Alais ◽  
Maarten J. van der Smagt ◽  
Frans A. J. Verstraten ◽  
W. A. van de Grind

AbstractAlthough the neural location of the plaid motion coherence process is not precisely known, the middle temporal (MT) cortical area has been proposed as a likely candidate. This claim rests largely on the neurophysiological findings showing that in response to plaid stimuli, a subgroup of cells in area MT responds to the pattern direction, whereas cells in area V1 respond only to the directions of the component gratings. In Experiment 1, we report that the coherent motion of a plaid pattern can be completely abolished following adaptation to a grating which moves in the plaid direction and has the same spatial period as the plaid features (the so-called “blobs”). Interestingly, we find this phenomenon is monocular: monocular adaptation destroys plaid coherence in the exposed eye but leaves it unaffected in the other eye. Experiment 2 demonstrates that adaptation to a purely binocular (dichoptic) grating does not affect perceived plaid coherence. These data suggest several conclusions: (1) that the mechanism determining plaid coherence responds to the motion of plaid features, (2) that the coherence mechanism is monocular, and thus (3), that it is probably located at a relatively low level in the visual system and peripherally to the binocular mechanisms commonly presumed to underlie two-dimensional (2-D) motion perception. Experiment 3 examines the spatial tuning of the monocular coherence mechanism and our results suggest it is broadly tuned with a preference for lower spatial frequencies. In Experiment 4, we examine whether perceived plaid direction is determined by the motion of the grating components or the features. Our data strongly support a feature-based model.


1994 ◽  
Vol 11 (6) ◽  
pp. 1205-1220 ◽  
Author(s):  
Hugh R. Wilson ◽  
Jeounghoon Kim

AbstractA recent model for two-dimensional motion processing in MT has demonstrated that perceived direction can be accurately predicted by combining Fourier and non-Fourier component motion signals using a vector sum computation. The vector sum direction is computed by a neural network that weights Fourier and non-Fourier components by the cosine of the component direction relative to that of each pattern unit, after which competitive inhibition extracts the signals of the most active units. It is shown here that a minor modification of the connectivity in this network suffices to predict transitions from motion coherence to transparency under a wide range of circumstances. It is only necessary that the cosine weighting function and competitive inhibition be limited to directions within ± 120 deg of each pattern unit's preferred direction. This network responds by signaling one pattern direction for coherent motion but two distinct directions for transparent motion. Based on this, neural networks with properties of MT and MST neurons can automatically signal motion coherence or transparency. In addition, the model accurately predicts motion repulsion under transparency conditions.


2019 ◽  
Author(s):  
Kevin K. Sit ◽  
Michael J. Goard

ABSTRACTPerception of visual motion is important for a range of ethological behaviors in mammals. In primates, specific higher visual cortical regions are specialized for processing of coherent visual motion. However, the distribution of motion processing among visual cortical areas in mice is unclear, despite the powerful genetic tools available for measuring population neural activity. Here, we used widefield and 2-photon calcium imaging of transgenic mice expressing a calcium indicator in excitatory neurons to measure mesoscale and cellular responses to coherent motion across the visual cortex. Imaging of primary visual cortex (V1) and several higher visual areas (HVAs) during presentation of natural movies and random dot kinematograms (RDKs) revealed heterogeneous responses to coherent motion. Although coherent motion responses were observed throughout visual cortex, particular HVAs in the putative dorsal stream (PM, AL, AM) exhibited stronger responses than ventral stream areas (LM and LI). Moreover, beyond the differences between visual areas, there was considerable heterogeneity within each visual area. Individual visual areas exhibited an asymmetry across the vertical retinotopic axis (visual elevation), such that neurons representing the inferior visual field exhibited greater responses to coherent motion. These results indicate that processing of visual motion in mouse cortex is distributed unevenly across visual areas and exhibits a spatial bias within areas, potentially to support processing of optic flow during spatial navigation.


2008 ◽  
Vol 25 (1) ◽  
pp. 17-26 ◽  
Author(s):  
A. ANTAL ◽  
J. BAUDEWIG ◽  
W. PAULUS ◽  
P. DECHENT

The posterior cingulate cortex (PCC) is involved in higher order sensory and sensory-motor integration while the planum temporale/parietal operculum (PT/PO) junction takes part in auditory motion and vestibular processing. Both regions are activated during different types of visual stimulation. Here, we describe the response characteristics of the PCC and PT/PO to basic types of visual motion stimuli of different complexity (complex and simple coherent as well as incoherent motion). Functional magnetic resonance imaging (fMRI) was performed in 10 healthy subjects at 3 Tesla, whereby different moving dot stimuli (vertical, horizontal, rotational, radial, and random) were contrasted against a static dot pattern. All motion stimuli activated a distributed cortical network, including previously described motion-sensitive striate and extrastriate visual areas. Bilateral activations in the dorsal region of the PCC (dPCC) were evoked using coherent motion stimuli, irrespective of motion direction (vertical, horizontal, rotational, radial) with increasing activity and with higher complexity of the stimulus. In contrast, the PT/PO responded equally well to all of the different coherent motion types. Incoherent (random) motion yielded significantly less activation both in the dPCC and in the PT/PO area. These results suggest that the dPCC and the PT/PO take part in the processing of basic types of visual motion. However, in dPCC a possible effect of attentional modulation resulting in the higher activity evoked by the complex stimuli should also be considered. Further studies are warranted to incorporate these regions into the current model of the cortical motion processing network.


2004 ◽  
Vol 16 (4) ◽  
pp. 528-540 ◽  
Author(s):  
Jeremy B. Wilmer ◽  
Alexandra J. Richardson ◽  
Yue Chen ◽  
John F. Stein

Developmental dyslexia is associated with deficits in the processing of visual motion stimuli, and some evidence suggests that these motion processing deficits are related to various reading subskills deficits. However, little is known about the mechanisms underlying such associations. This study lays a richer groundwork for exploration of such mechanisms by more comprehensively and rigorously characterizing the relationship between motion processing deficits and reading subskills deficits. Thirty-six adult participants, 19 of whom had a history of developmental dyslexia, completed a battery of visual, cognitive, and reading tests. This battery combined motion processing and reading subskills measures used across previous studies and added carefully matched visual processing control tasks. Results suggest that there are in fact two distinct motion processing deficits in developmental dyslexia, rather than one as assumed by previous research, and that each of these deficits is associated with a different type of reading subskills deficit. A deficit in detecting coherent motion is selectively associated with low accuracy on reading subskills tests, and a deficit in discriminating velocities is selectively associated with slow performance on these same tests. In addition, evidence from visual processing control tasks as well as self-reports of ADHD symptoms suggests that these motion processing deficits are specific to the domain of visual motion, and result neither from a broader visual deficit, nor from the sort of generalized attention deficit commonly comorbid with developmental dyslexia. Finally, dissociation between these two motion processing deficits suggests that they may have distinct neural and functional underpinnings. The two distinct patterns of motion processing and reading deficits demonstrated by this study may reflect separable underlying neurocognitive mechanisms of developmental dyslexia.


Perception ◽  
10.1068/p6129 ◽  
2009 ◽  
Vol 38 (8) ◽  
pp. 1132-1143 ◽  
Author(s):  
Charles A Collin ◽  
Patricia A McMullen ◽  
Julie-Anne Séguin

Matching performance is better when pairs of visual stimuli are presented in bilateral conditions—in which one stimulus is presented to each side of the visual field—than in unilateral presentations—when both stimuli are presented to one side of the field. This is called the bilateral field advantage (BFA). The processing of visual motion has also been found to be more strongly integrated across the cerebral hemispheres than is processing of static cues. However, in these studies higher-order motion tasks, such as processing motion-defined form, have not been examined. To determine if the BFA generalises to such tasks, we measured the magnitude of the effect using a shape-matching task in which the stimuli were random polygons that were either in motion, motion-defined, or static. The polygon pairs were presented either: (i) bilaterally, one to either side of the vertical meridian; (ii) unilaterally, both to one side of the vertical meridian (left or right visual fields); or (iii) centrally, vertically separated across the horizontal meridian (a control condition). An equal advantage of bilateral conditions over unilateral ones was found for all three types of polygon shape cues, showing that the BFA generalises to conditions where shapes are in motion and where shape is defined by motion. These findings are compatible with the notion that motion processing is strongly integrated across the cerebral hemispheres, and with the idea that this integration manifests itself with simple motion information, rather than with higher-order motion processing such as matching shapes defined by motion.


2019 ◽  
Vol 31 (8) ◽  
pp. 1126-1140 ◽  
Author(s):  
Talia L. Retter ◽  
Michael A. Webster ◽  
Fang Jiang

Individuals who are deaf since early life may show enhanced performance at some visual tasks, including discrimination of directional motion. The neural substrates of such behavioral enhancements remain difficult to identify in humans, although neural plasticity has been shown for early deaf people in the auditory and association cortices, including the primary auditory cortex (PAC) and STS region, respectively. Here, we investigated whether neural responses in auditory and association cortices of early deaf individuals are reorganized to be sensitive to directional visual motion. To capture direction-selective responses, we recorded fMRI responses frequency-tagged to the 0.1-Hz presentation of central directional (100% coherent random dot) motion persisting for 2 sec contrasted with nondirectional (0% coherent) motion for 8 sec. We found direction-selective responses in the STS region in both deaf and hearing participants, but the extent of activation in the right STS region was 5.5 times larger for deaf participants. Minimal but significant direction-selective responses were also found in the PAC of deaf participants, both at the group level and in five of six individuals. In response to stimuli presented separately in the right and left visual fields, the relative activation across the right and left hemispheres was similar in both the PAC and STS region of deaf participants. Notably, the enhanced right-hemisphere activation could support the right visual field advantage reported previously in behavioral studies. Taken together, these results show that the reorganized auditory cortices of early deaf individuals are sensitive to directional motion. Speculatively, these results suggest that auditory and association regions can be remapped to support enhanced visual performance.


Sign in / Sign up

Export Citation Format

Share Document