scholarly journals Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels

2010 ◽  
Vol 187 (2) ◽  
pp. 313-331 ◽  
Author(s):  
David L. Parrott ◽  
John M. Martin ◽  
Andreas M. Fischer
2002 ◽  
Vol 53 (367) ◽  
pp. 233-240 ◽  
Author(s):  
Carol Wagstaff ◽  
Michael K. Leverentz ◽  
Gareth Griffiths ◽  
Brian Thomas ◽  
Usawadee Chanasut ◽  
...  

2020 ◽  
Vol 126 (3) ◽  
pp. 435-444
Author(s):  
Cintia G Veliz ◽  
Maria Victoria Criado ◽  
María Florencia Galotta ◽  
Irma N Roberts ◽  
Carla Caputo

Abstract Background and Aims Proteases are responsible for protein degradation during leaf senescence, allowing nutrients to be redirected to sink tissues. In a previous work, we reported that sulphur deficiency produced a delay in the leaf senescence of barley (Hordeum vulgare L.) plants, at both vegetative and reproductive stages. In this work, we analyse the effect of sulphur deficiency on the expression of several genes coding for proteases of different catalytic groups, which have been strongly associated with leaf senescence. Methods Four independent experiments were performed in order to impose low sulphur availability conditions: one of steady-state sulphur deficiency during the vegetative stage and three of sulphur starvation during vegetative and reproductive stages. Key Results Sulphur deficiency inhibited or reduced the senescence-associated induction of seven of the eight proteases analysed. Their induction, as well as senescence and phloem amino acid remobilization, could be achieved with senescence inducers such as methyl-jasmonate (a hormonal stimulus) and darkness, but with different rates of induction dependent on each gene. Sulphur deficiency also exerted an opposite effect on the expression of two cysteine-protease genes (HvSAG12 and HvLEGU) as well as on one serine-protease gene (HvSUBT) according to leaf age and plant phenological stages. All three genes were induced in green leaves but were repressed in senescent leaves of sulphur-deficient plants at the vegetative stage. At the reproductive stage, both cysteine-proteases were only repressed in senescent leaves, while the serine-protease was induced in green and senescent leaves by sulphur deficiency. Conclusions Our results highlight the relevance of adequate sulphur nutrition in order to ensure leaf senescence onset and induction of protease genes, which will consequently impact on grain protein composition and quality. In addition, our results provide evidence that leaf age, plant developmental stage and the nature of the stress modulate the sulphur responses.


2005 ◽  
Vol 56 (420) ◽  
pp. 2733-2744 ◽  
Author(s):  
Michelle L. Jones ◽  
Gunching S. Chaffin ◽  
Jocelyn R. Eason ◽  
David G. Clark

2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 6-7
Author(s):  
E Fekete ◽  
C B Amat ◽  
T Allain ◽  
M Hollenberg ◽  
K Mihara ◽  
...  

Abstract Background Giardia duodenalis has been shown to alter the structure of the intestinal mucus layers during infection via obscure mechanisms. We hypothesize that goblet cell activity may be disrupted in part due to proteolytic activation of protease-activated receptor 2 (PAR2) by Giardia proteases, resulting in disruption of mucus production and secretion by intestinal goblet cells. Aims Characterize alterations in goblet cell activity during Giardia infection, focusing on the roles of Giardia protease activity and PAR2. Methods Chinese hamster ovary cells transfected with nano-luciferase tagged PAR2 were incubated with Giardia NF or GSM trophozoites. Cleavage within the activation domain results in release of enzymes into the supernatant. Luminescence in the supernatant was measured as an indication of PAR cleavage by Giardia. LS174T, a human colonic mucus-producing cell line, was infected with Giardia trophozoites (isolates NF, WB, S2, and GSM). Prior to infection, trophozoites were treated with E64, a broad-spectrum cysteine protease inhibitor, and LS174T were treated with a PAR2 antagonist, a calcium chelator, or an ERK1/2 inhibitor. Quantitative PCR (qPCR) was performed for the MUC2 mucin gene. Wild-type (WT) and PAR2 knockout (KO) mice were infected with Giardia. Colonic mucus was stained using fluorescein-coupled wheat-germ agglutinin (WGA), and qPCR was performed for Muc2 and Muc5ac. Results Giardia trophozoites cleaved PAR2 within the N-terminal activation domain in a cysteine protease-dependent manner. Cleavage was isolate dependent, with isolates that show higher protease activity cleaving at a higher rate. High protease activity Giardia isolates increased MUC2 gene expression in LS714T. This increase was attenuated by inhibition of Giardia cysteine protease activity, and by antagonism of PAR2, inhibition of calcium release, or inhibition of ERK1/2 activity in LS174T cells. Both Muc2 and Muc5ac expression were upregulated in the colons of WT mice in response to Giardia infection, while in the jejunum Muc2 expression decreased and Muc5ac expression increased. In KO, no changes in gene expression were seen in the colon in response to Giardia infection, while in the jejunum, Muc2 expression was unchanged and Muc5ac expression decreased. Both WT infected and KO noninfected mice showed thinning of the colonic mucus layer compared to WT controls. There was some recovery in thickness in KO infected mice. Conclusions PAR2 plays a significant role in the regulation of mucin gene expression in mice and in a human colonic cell line. Results suggest that Giardia cysteine proteases cleave and activate PAR2, leading to calcium release and activation of the MAPK pathway in goblet cells, ultimately leading to altered mucin gene expression. Findings identify a novel regulatory pathway for mucus production by intestinal goblet cells. Funding Agencies CAG, CCC


Sign in / Sign up

Export Citation Format

Share Document