molecular identification
Recently Published Documents





2023 ◽  
Vol 83 ◽  
M. Idnan ◽  
A. Javid ◽  
M. Tayyab ◽  
A. Hussain ◽  
S. Mansoor ◽  

Abstract A total of 10 specimens were captured from selected sites of Bajaur Agency FATA, Pakistan using mist nets. The captured specimens were morphologically identified and various morphometric measurements were taken. The head and Body length (HB) of Pipistrellus coromondra and Pipistrellus kuhlii lepidus (n=10) was 43±0.11 mm and 45±1.1 respectively. Morphologically identified Pipistrellus kuhlii confirmed as Pipistrellus kuhlii lepidus based on 16S rRNA sequences. The DNA sequences were submitted to GenBank and accession numbers were obtained (MN 719478 and MT430902). The available 16S rRNA gene sequences of Pipistrellus coromondra and Pipistrellus kuhlii lepidus were retrieved from NCBI and incorporated in N-J tree analysis. Overall, the interspecific genetic variations among Pipistrellus coromondra and Pipistrellus kuhlii lepidus were 8% and 1% respectively. In our recommendation, a comprehensive molecular identification of bats is need of hour to report more cryptic and new species from Pakistan.

2022 ◽  
Vol 21 (1) ◽  
Godfrey Manirakiza ◽  
Kennedy Kassaza ◽  
Ivan Mugisha Taremwa ◽  
Joel Bazira ◽  
Fredrick Byarugaba

Abstract Background The evolution of malaria infection has necessitated the development of highly sensitive diagnostic assays, as well as the use of dried blood spots (DBS) as a potential source of deoxyribonucleic acid (DNA) yield for polymerase chain reaction (PCR) assays. This study identified the different Plasmodium species in malaria-positive patients, and the anti-malarial drug resistance profile for Plasmodium falciparum using DBS samples collected from patients attending Kisoro Hospital in Kisoro district, Southwestern Uganda. Methods The blood samples were prospectively collected from patients diagnosed with malaria to make DBS, which were then used to extract DNA for real-time PCR and high-resolution melting (HRM) analysis. Plasmodium species were identified by comparing the control and test samples using HRM-PCR derivative curves. Plasmodium falciparum chloroquine (CQ) resistance transporter (pfcrt) and kelch13 to screen the samples for anti-malarial resistance markers. The HRM-PCR derivative curve was used to present a summary distribution of the different Plasmodium species as well as the anti-malarial drug profile. Results Of the 152 participants sampled, 98 (64.5%) were females. The average age of the participants was 34.9 years (range: 2 months–81 years). There were 134 samples that showed PCR amplification, confirming the species as Plasmodium. Plasmodium falciparum (N = 122), Plasmodium malariae (N = 6), Plasmodium ovale (N = 4), and Plasmodium vivax (N = 2) were the various Plasmodium species and their proportions. The results showed that 87 (71.3%) of the samples were sensitive strains/wild type (CVMNK), 4 (3.3%) were resistant haplotypes (SVMNT), and 31 (25.4%) were resistant haplotypes (CVIET). Kelch13 C580Y mutation was not detected. Conclusion The community served by Kisoro hospital has a high Plasmodium species burden, according to this study. Plasmodium falciparum was the dominant species, and it has shown that resistance to chloroquine is decreasing in the region. Based on this, molecular identification of Plasmodium species is critical for better clinical management. Besides, DBS is an appropriate medium for DNA preservation and storage for future epidemiological studies.

2022 ◽  
Vol 7 (1) ◽  
pp. 1-7
A Shabnam ◽  
K P Dinesh

DNA Barcoding is one of the emerging tools in molecular identification of faunal diversity, specifically insect fauna. The Surinam cockroach, Pycnoscelus surinamensis is the only known roach to be obligatorily parthenogenetic, with reported haplotypes. P. surinamensis is well established in Indomalayan, tropical and subtropical regions and substantially documented from India with a phenetic approach. Herewith we report the first set of mt DNA barcode from a vouchered collection for the species from southern Western Ghats India. Discussions are made on the identity of two sequences each of Blatteria species and Pycnoscelus species reported from USA.

2022 ◽  
Vol 2 (1) ◽  
pp. 01-08
Makwin Danladi Makut ◽  
Kenneth Kit Madaiki ◽  
Obumneme Smart Obiekezie

Background: Despite the wide application of Xanthan gum, its commercial production remains a global challenge. In recent years, considerable research has been carried out using agro-industrial wastes, which are renewable and abundantly available to produce value-added products. The present study was set out for molecular identification of Xanthomonas campestris from leaves of four different plants with indications of dark rot spots and evaluation of their xanthan gum production capacity. Methods: Twenty-five (25) samples of leaves from four different plants with indications of dark rot spots were collected from the study area and isolated for Xanthomonas campestris following standard microbiological methods. Cultural, morphological and biochemical tests were conducted to confirm the organism. Results: The results revealed that of the total 100 samples taken, 6 leaves (24%) were infected with Xanthomonas species in mint, 3(12%) were infected in mango, 1(4%) were infected in rice and 2(8%) were infected in pepper. Further molecular identification of the isolates was carried out to reveal Xanthomonas campestris pv. vesicatoria strain 85-10 and Xanthomonas perforans strain 91-118. These were further used for the production of xanthan gum using sugar cane molasses substrates extracted from sugar cane, which was used as fermentation medium for the production. Isolates from plants varying ability in Xanthan gum production, with the mint plant having the highest Xanthan gum production (0.10 ± 0.02 to 0.9 ± 0.00 g/l). Conclusion: The present study confirmed the high xanthan gum production capacity of Xanthomonas campestris from dark rot spots containing mint leaves and should be considered during local and industrial production of the xanthan gum

Qian Tang ◽  
Qi Luo ◽  
Qian Duan ◽  
Lei Deng ◽  
Renyi Zhang

Nowadays, the global fish consumption continues to rise along with the continuous growth of the population, which has led to the dilemma of overfishing of fishery resources. Especially high-value fish that are overfished are often replaced by other fish. Therefore, the accurate identification of fish products in the market is a problem worthy of attention. In this study, full-DNA barcoding (FDB) and mini-DNA barcoding (MDB) used to detect the fraud of fish products in Guiyang, Guizhou province in China. The molecular identification results showed that 39 of the 191 samples were not consistent with the labels. The mislabelling of fish products for fresh, frozen, cooked and canned were 11.70%, 20.00%, 34.09% and 50.00%, respectively. The average kimura 2 parameter distances of MDB within species and genera were 0.27% and 5.41%, respectively; while average distances of FDB were 0.17% within species and 6.17% within genera. In this study, commercial fraud is noticeable, most of the high-priced fish were replaced of low-priced fish with a similar feature. Our study indicated that DNA barcoding is a valid tool for the identification of fish products and that it allows an idea of conservation and monitoring efforts, while confirming the MDB as a reliable tool for fish products.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 338
Shigeyuki Kawai ◽  
Wataru Hashimoto

4-Deoxy-l-erythro-5-hexoseulose uronate (DEH), DEH reductase, and alginate lyase have key roles in the metabolism of alginate, a promising carbon source in brown macroalgae for biorefinery. In contrast to the widely reviewed alginate lyase, DEH and DEH reductase have not been previously reviewed. Here, we summarize the current understanding of DEH and DEH reductase, with emphasis on (i) the non-enzymatic and enzymatic formation and structure of DEH and its reactivity to specific amino groups, (ii) the molecular identification, classification, function, and structure, as well as the structural determinants for coenzyme specificity of DEH reductase, and (iii) the significance of DEH for biorefinery. Improved understanding of this and related fields should lead to the practical utilization of alginate for biorefinery.

Sign in / Sign up

Export Citation Format

Share Document