Localization and Characterization of Binding Sites with High Affinity for [3H]Ouabain in Cerebral Cortex of Rabbit Brain Using Quantitative Autoradiography

1989 ◽  
Vol 52 (1) ◽  
pp. 193-200 ◽  
Author(s):  
Marta C. Antonelli ◽  
Denis G. Baskin ◽  
Miriam Garland ◽  
William L. Stahl
1986 ◽  
Vol 6 (4) ◽  
pp. 463-470 ◽  
Author(s):  
Rajesh N. Kalaria ◽  
Sami I. Harik

We studied, by ligand binding methods, the two adenosine receptors, A, and A2, in rat and pig cerebral microvessels and pig choroid plexus. Ligand binding to cerebral microvessels was compared with that to membranes of the cerebral cortex. [3H]Cyclohexyladenosine and [3H]l-phenylisopropyladenosine were the ligands used for A1-receptors, and [3H]5'- N-ethylcarboxamide adenosine ([3H]NECA) was used to assess A2-receptors. We report that cerebral microvessels and choroid plexus exhibit specific [3H]NECA binding, but have no appreciable A1-receptor ligand binding sites. Specific binding of [3H]NECA to cerebral microvessels, choroid plexus, and cerebral cortex was saturable and suggested the existence of two classes of A2-receptor sites: high-affinity ( Kd ∼ 250 n M) and low-affinity ( Kd ∼ 1–2 μ M) sites. The Kd and Bmax of NECA binding to cerebral microvessels and cerebral cortex were similar within each species. Our results, indicating the existence of A2-receptors in cerebral microvessels, are consistent with results of increased adenylate cyclase activity by adenosine and some of its analogues in these microvessels.


Life Sciences ◽  
1994 ◽  
Vol 54 (15) ◽  
pp. 1109-1118 ◽  
Author(s):  
Valeria Gagliardini ◽  
Carlo Taddei ◽  
Mario Salmona ◽  
Paul Pham ◽  
Tiziana Mennini ◽  
...  

1992 ◽  
Vol 40 (6) ◽  
pp. 771-779 ◽  
Author(s):  
A A Maki ◽  
D G Baskin ◽  
W L Stahl

The anatomic distribution of high- and low-affinity cardiac glycoside binding sites in the nervous system is largely unknown. In the present study the regional distribution and properties of these sites were determined in rat brain by quantitative autoradiography (QAR). Two populations of cardiac glycoside binding sites were demonstrated with [3H]-ouabain, a specific inhibitor of Na,K-ATPases: (a) high-affinity binding sites with Kd values of 22-69 nM, which were blocked by erythrosin B, and (b) low-affinity binding sites with Kd values of 727-1482 nM. Sites with very low affinity for ouabain were not found by QAR. High- and low-affinity [3H]-ouabain binding sites were both found in all brain regions studied, including somatosensory cortex, thalamic and hypothalamic areas, medial forebrain bundle, amygdaloid nucleus, and caudate-putamen, although the distributions of high- and low-affinity sites were not congruent. Low-affinity [3H]-ouabain binding sites (Bmax = 222-358 fmol/mm2) were approximately twofold greater in number than high-affinity binding sites (Bmax = 76-138 fmol/mm2) in these regions of brain. Binding of [3H]-ouabain to both high- and low-affinity sites was blocked by Na+; however, low-affinity binding sites were less sensitive to inhibition by K+ (IC50 = 6.4 mM) than the high-affinity [3H]-ouabain binding sites (IC50 = 1.4 mM). The QAR method, utilizing [3H]-ouabain under standard conditions, is a valid method for studying modulation of Na,K-ATPase molecules in well-defined anatomic regions of the nervous system.


1985 ◽  
Vol 85 (3) ◽  
pp. 697-703 ◽  
Author(s):  
Christopher P. Berrie ◽  
Nigel J.M. Birdsall ◽  
Edward C. Hulme ◽  
Mary Keen ◽  
Jane M. Stockton

Sign in / Sign up

Export Citation Format

Share Document