scholarly journals Adenosine Receptors of Cerebral Microvessels and Choroid Plexus

1986 ◽  
Vol 6 (4) ◽  
pp. 463-470 ◽  
Author(s):  
Rajesh N. Kalaria ◽  
Sami I. Harik

We studied, by ligand binding methods, the two adenosine receptors, A, and A2, in rat and pig cerebral microvessels and pig choroid plexus. Ligand binding to cerebral microvessels was compared with that to membranes of the cerebral cortex. [3H]Cyclohexyladenosine and [3H]l-phenylisopropyladenosine were the ligands used for A1-receptors, and [3H]5'- N-ethylcarboxamide adenosine ([3H]NECA) was used to assess A2-receptors. We report that cerebral microvessels and choroid plexus exhibit specific [3H]NECA binding, but have no appreciable A1-receptor ligand binding sites. Specific binding of [3H]NECA to cerebral microvessels, choroid plexus, and cerebral cortex was saturable and suggested the existence of two classes of A2-receptor sites: high-affinity ( Kd ∼ 250 n M) and low-affinity ( Kd ∼ 1–2 μ M) sites. The Kd and Bmax of NECA binding to cerebral microvessels and cerebral cortex were similar within each species. Our results, indicating the existence of A2-receptors in cerebral microvessels, are consistent with results of increased adenylate cyclase activity by adenosine and some of its analogues in these microvessels.

1991 ◽  
Vol 11 (4) ◽  
pp. 557-566 ◽  
Author(s):  
Parvin Homayoun ◽  
Sami I. Harik

We examined by ligand binding methods whether bradykinin (BK) receptors exist in rat and pig cerebral microvessels, and in the cerebral cortex from which the microvessels were isolated. We found a high-affinity and saturable BK receptor site in both rat and pig cerebral microvessels, but not in their cerebral cortex. The maximal density of binding and the dissociation constant were 8.0 ± 4.1 and 6.8 ± 1.5 fmol/mg of protein and 47 ± 24 and 150 ± 8 p M (mean ± SD) in cerebral microvessels of the pig and rat, respectively. The high-affinity specific binding of BK was effectively displaced by des-Arg0[Hyp3-Thi5–8,D-Phe7]BK, a specific B2 receptor antagonist, but not by des-Arg9[Leu8]BK, a specific B1 antagonist. We also demonstrated that BK increases phosphatidylinositol hydrolysis in cerebral microvessels of the rat and pig. This effect was also blocked by the B2, but not by the B1, antagonist. Increased phosphatidylinositol hydrolysis was manifested by a rapid transient increase in inositol trisphosphate and the later slow accumulation of inositol bisphosphate and inositol monophosphate. Preincubation of microvessels with phorbol ester, stable GTP analogs, pertussis toxin, or in Ca2+-free buffer did not influence BK activation of phosphatidylinositol hydrolysis. These results demonstrate the existence of BK receptors of the B2 subtype in brain microvessels, which may play an important role in modulation of the brain microcirculation, probably via increased phosphoinositide turnover.


1988 ◽  
Vol 8 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Rajesh N. Kalaria ◽  
Sami I. Harik

Evidence suggests that adenosine modulates neuronal and cerebral vascular functions by interacting with specific receptors on brain cells and blood vessels. Adenosine and other nucleosides are also transported across the blood-brain barrier via a saturable, carrier-mediated mechanism. Using direct ligand binding methods, we studied the two adenosine receptor subtypes, A1 and A2, and the nucleoside transporter moiety in human brain microvessels, pial vessels, choroid plexus, and cerebral cortex membranes. The following specific tritiated ligands were used: cyclohexyladenosine (CHA) for A1 receptors; 5'- N-ethylcarboxamide adenosine (NECA) for A2 receptors; nitrobenzylthioinosine (NBMPR) and dipyridamole (DPY) for nucleoside transporters. We find that cerebral microvessels, pial vessels, and choroid plexus have few, if any, A1 receptors, in contradistinction to cerebral membranes, which have a 10–20-fold higher density of A1 receptor sites. Specific high-affinity NECA binding to A2 receptors in cerebral microvessels, pial vessels, and choroid plexus was saturable and was equivalent to that of cerebral cortical membranes. The Bmax and Kd of the high-affinity NECA binding to vessel preparations were ∼1.3 pmol/mg protein and ∼250 n M, respectively, which is similar to our previous findings in the rat and pig. NBMPR and binding were also saturable and were consistent with a single class of high-affinity binding sites. The density of nucleoside transporters was ∼four-fold higher in cerebral microvessels than in cerebral cortex, pial vessels, and choroid plexus. These results suggest that human cerebral microvessels have A2, but not A1, receptors and are particularly enriched with the adenosine transporter moiety.


1997 ◽  
Vol 273 (4) ◽  
pp. C1437-C1439
Author(s):  
A. W. Cuthbert

The following is the abstract of the article discussed in the subsequent letter: Blazer-Yost, Bonnie L., and Sandy I. Helman.The amiloride-sensitive epithelial Na+ channel: binding sites and channel densities. Am. J. Physiol. 272 ( Cell Physiol. 41): C761–C769, 1997.—The amiloride-sensitive Na+ channel found in many transporting epithelia plays a key role in regulating salt and water homeostasis. Both biochemical and biophysical approaches have been used to identify, characterize, and quantitate this important channel. Among biophysical methods, there is agreement as to the single-channel conductance and gating kinetics of the highly selective Na+ channel found in native epithelia. Amiloride and its analogs inhibit transport through the channel by binding to high-affinity ligand-binding sites. This characteristic of high-affinity binding has been used biochemically to quantitate channel densities and to isolate presumptive channel proteins. Although the goals of biophysical and biochemical experiments are the same in elucidating mechanisms underlying regulation of Na+transport, our review highlights a major quantitative discrepancy between methods in estimation of channel densities involved in transport. Because the density of binding sites measured biochemically is three to four orders of magnitude in excess of channel densities measured biophysically, it is unlikely that high-affinity ligand binding can be used physiologically to quantitate channel densities and characterize the channel proteins.


2019 ◽  
Vol 47 (2) ◽  
pp. 701-711 ◽  
Author(s):  
Matthew Wilding ◽  
Nansook Hong ◽  
Matthew Spence ◽  
Ashley M. Buckle ◽  
Colin J. Jackson

Abstract Engineered proteins, especially enzymes, are now commonly used in many industries owing to their catalytic power, specific binding of ligands, and properties as materials and food additives. As the number of potential uses for engineered proteins has increased, the interest in engineering or designing proteins to have greater stability, activity and specificity has increased in turn. With any rational engineering or design pursuit, the success of these endeavours relies on our fundamental understanding of the systems themselves; in the case of proteins, their structure–dynamics–function relationships. Proteins are most commonly rationally engineered by targeting the residues that we understand to be functionally important, such as enzyme active sites or ligand-binding sites. This means that the majority of the protein, i.e. regions remote from the active- or ligand-binding site, is often ignored. However, there is a growing body of literature that reports on, and rationalises, the successful engineering of proteins at remote sites. This minireview will discuss the current state of the art in protein engineering, with a particular focus on engineering regions that are remote from active- or ligand-binding sites. As the use of protein technologies expands, exploiting the potential improvements made possible through modifying remote regions will become vital if we are to realise the full potential of protein engineering and design.


Biochemistry ◽  
2008 ◽  
Vol 47 (48) ◽  
pp. 12900-12909 ◽  
Author(s):  
Linda Whittaker ◽  
Caili Hao ◽  
Wen Fu ◽  
Jonathan Whittaker

2015 ◽  
Vol 471 (3) ◽  
pp. 403-414 ◽  
Author(s):  
M. Florencia Rey-Burusco ◽  
Marina Ibáñez-Shimabukuro ◽  
Mads Gabrielsen ◽  
Gisela R. Franchini ◽  
Andrew J. Roe ◽  
...  

Necator americanus fatty acid and retinol-binding protein-1 (Na-FAR-1) is an abundantly expressed FAR from a parasitic hookworm. The present work describes its tissue distribution, structure and ligand-binding characteristics and shows that Na-FAR-1 expands to transport multiple FA molecules in its internal cavity.


Sign in / Sign up

Export Citation Format

Share Document