Short and long-term distribution with depth of soil organic carbon and nutrients under traditional and conservation tillage in a Mediterranean environment (southwest Spain)

2011 ◽  
Vol 27 (2) ◽  
pp. 177-185 ◽  
Author(s):  
R. López-Garrido ◽  
E. Madejón ◽  
J. M. Murillo ◽  
F. Moreno
2016 ◽  
Vol 5 (4) ◽  
pp. 353-361 ◽  
Author(s):  
V. Kushwa ◽  
K. M. Hati ◽  
Nishant K. Sinha ◽  
R. K. Singh ◽  
M. Mohanty ◽  
...  

2020 ◽  
Vol 31 (9) ◽  
pp. 1138-1150 ◽  
Author(s):  
Zhen Liu ◽  
Tianping Gao ◽  
Shenzhong Tian ◽  
Hengyu Hu ◽  
Geng Li ◽  
...  

Geoderma ◽  
2020 ◽  
Vol 362 ◽  
pp. 114110 ◽  
Author(s):  
Rayangnéwendé Adèle Ouédraogo ◽  
Caroline Chartin ◽  
Fabèkourè Cédric Kambiré ◽  
Bas van Wesemael ◽  
Bruno Delvaux ◽  
...  

2003 ◽  
Vol 43 (4) ◽  
pp. 325 ◽  
Author(s):  
K. Y. Chan ◽  
D. P. Heenan ◽  
H. B. So

Light-textured soils (<35% clay) make up more than 80%, by area, of cropping soils in Australia. Many have inherent soil physical problems, e.g. hardsetting, sodicity and low organic carbon levels. Maintenance and improvement of soil organic carbon levels are crucial to preserving the soil structure and physical fertility of these soils.A review of field trials on conservation tillage (3–19 years duration) on these soils in southern Australia revealed that significantly higher soil organic carbon levels compared with conventional tillage were found only in the wetter areas (>500 mm) and the differences were restricted to the top 2.5–10.0 cm. The average magnitude of the difference was lower than that reported in the USA. The lack of a positive response to conservation tillage is probably a reflection of a number of factors, namely low crop yield (due to low rainfall), partial removal of stubble by grazing and the high decomposition rate (due to the high temperature). There is evidence suggesting that under continuous cropping in the drier areas, the soil organic carbon level continues to decline, even under conservation tillage.Better soil structure and soil physical properties, namely macro-porosity, aggregate stability and higher infiltration have been reported under conservation tillage when compared with conventional tillage. However, little information on long-term changes of these properties under conservation tillage is available. As many of these soil qualities are associated directly or indirectly with soil organic carbon levels, the lack of significant increase in the latter suggests that many of these improvements may not be sustainable in the longer term, particularly in the drier areas. Continuous monitoring of long-term changes in the soil organic carbon and soil quality under conservation tillage in different agro-ecological zones is needed.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kenneth R. Olson ◽  
Stephen A. Ebelhar ◽  
James M. Lang

The 24-year study was conducted in southern Illinois (USA) on land similar to that being removed from Conservation Reserve Program (CRP) to evaluate the effects of conservation tillage systems on: (1) amount and rates of soil organic carbon (SOC) storage and retention, (2) the long-term corn and soybean yields, and (3) maintenance and restoration of soil productivity of previously eroded soils. The no-till (NT) plots did store and retain 7.8 Mg C ha−1more and chisel plow (CP) −1.6 Mg C ha−1less SOC in the soil than moldboard plow (MP) during the 24 years. However, no SOC sequestration occurred in the sloping and eroding NT, CP, and MP plots since the SOC level of the plot area was greater at the start of the experiment than at the end. The NT plots actually lost a total of −1.2 Mg C ha−1, the CP lost −9.9 Mg C ha−1, and the MP lost −8.2 Mg C ha−1during the 24-year study. The long-term productivity of NT compared favorably with that of MP and CP systems.


Sign in / Sign up

Export Citation Format

Share Document