conservation tillage
Recently Published Documents


TOTAL DOCUMENTS

1299
(FIVE YEARS 254)

H-INDEX

67
(FIVE YEARS 9)

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Junteng Ma ◽  
Feng Wu ◽  
Huanxiong Xie ◽  
Fengwei Gu ◽  
Hongchen Yang ◽  
...  

Nowadays, the advanced comprehensive utilization and the complete prohibition of burning fully covered straws in croplands have become increasingly important in agriculture engineering. As a kind of direct straw-mulching method in China, conservation tillage with straw smashing is an effective method to reduce pollution and enhance fertility. In view of the high straw-returning yields, complicated manual operation, and the poor performance of straw detection with machine vision, this study introduces a novel form of uniformity detection for straws based on overlapping region analysis. An image-processing technology using a novel overlapping region analysis was proposed to overcome the inefficiency and low precision resulting from the manual identification of the straw uniformity. In this study, the debris in the gray map was removed according to region characteristics. Through using morphological theory with overlapping region analysis in low-density cases, straws of appropriate length can be identified and then uniformity detection can be accomplished. Compared with traditional threshold segmentation methods, the advantages of an accurate identification, fast operation, and high efficiency contribute to the better performance of the innovative overlapping region analysis. Finally, the proposed algorithm was verified through detecting the uniformity in low-density cases, with an average accuracy rate of 97.69%, providing a novel image recognition solution for automatic straw-mulching systems.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 128
Author(s):  
Vladimír Rataj ◽  
Jitka Kumhálová ◽  
Miroslav Macák ◽  
Marek Barát ◽  
Jana Galambošová ◽  
...  

Cereals in Europe are mainly grown with intensive management. This often leads to the deterioration of the physical properties of the soil, especially increasing bulk density due to heavy machinery traffic, which causes excessive soil compaction. Controlled traffic farming (CTF) technology has the potential to address these issues, as it should be advantageous technology for growing cereals during climate change. The aim of this study was to compare the yield potential of CTF and standardly used random traffic farming (RTF) technology using yield maps obtained from combine harvester and satellite imagery as a remote sensing method. The experiment was performed on a 16-hectare experimental field with a CTF system established in 2009 (with conversion from a conventional (ploughing) to conservation tillage system). Yield was compared in years when small cereals were grown, a total of 7 years within a 13-year period (2009–2021). The results show that CTF technology was advantageous in dry years. Cereals grown in the years 2016, 2017 and 2019 had significantly higher yields under CTF technology. On the contrary, in years with higher precipitation, RTF technology had slightly better results—up to 4%. This confirms higher productivity when using CTF technology in times of climate change.


2022 ◽  
pp. 331-344
Author(s):  
Cary Clark ◽  
Amir Kassam ◽  
Saidi Mkomwa ◽  
Peter Kuria ◽  
Weldone Mutai

Abstract This chapter brings together recent developments and ongoing efforts in Conservation Agriculture (CA) education in Africa. It covers areas related to online education and training including CA Massive Open Online Courses (MOOCs), CA-based education and training capacity, CA curriculum development and CA quality assurance. An overview of emerging opportunities in CA education and training are elaborated in general, as well as through specific efforts of institutions such as the African Conservation Tillage Network. CA-based land use transformation occurring in Africa, and the growth of related supporting activities in public and private sectors, represent an important area of opportunity for education and training. It also offers opportunity for youth to develop their vocational and professional careers in the food and agriculture sector.


2022 ◽  
Vol 215 ◽  
pp. 105197
Author(s):  
Huaying Zhang ◽  
Yichao Shi ◽  
Yuxin Dong ◽  
David R. Lapen ◽  
Jinghui Liu ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260673
Author(s):  
Ahmad Sher ◽  
Muhammad Yasir Arfat ◽  
Sami Ul-Allah ◽  
Abdul Sattar ◽  
Muhammad Ijaz ◽  
...  

Sunflower production is significantly lower in arid and semi-arid regions due to various crop management problem. Conservation of tillage provides the most excellent opportunity to reduce degradation of soil reserves and increase soil productivity. The main objective of this study was to investigate the combined effects of conservation tillage and drought stress on growth and productivity of different sunflower hybrids. Experimental treatments included two sunflower hybrids (‘NK-Senji’ and ‘S-278’), two drought stress treatments (i.e., well-watered and drought stress at flowering and grain filling stages) and three tillage practices (i.e., conservation, minimum and deep tillage). The results indicated that morphological and physiological parameters, and yield-related traits were significantly (P≤0.05) affected by all individual factors; however, their interactive effects were non-significant. Among sunflower hybrids, ‘NK-Senji’ performed better for morphological, physiological, and yield-related traits than ‘S-278’. Similarly, conservation tillage observed better traits compared to the rest of the tillage practices included in the study. Nonetheless, conservation tillage improved growth and yield-related traits of hybrid ‘NK-Senji’ under drought stress. Hence, it is concluded that conservation tillage can improve the productivity of sunflower under low moisture availability. Therefore, conservation tillage could be suggested in the areas of lower water ability to improve sunflower production. Nonetheless, sunflower hybrids or varieties need thorough testing for their adaptability to conservation tillage and low moisture availability before making recommendations.


2021 ◽  
Author(s):  
Cong He ◽  
Jia‐Rui Niu ◽  
Cheng‐Tang Xu ◽  
Shou‐Wei Han ◽  
Wei Bai ◽  
...  

2021 ◽  
Vol 13 (24) ◽  
pp. 13753
Author(s):  
Niamat Ullah Khan ◽  
Aftab Ahmad Khan ◽  
Muhammad Arif Goheer ◽  
Izwa Shafique ◽  
Sadam Hussain ◽  
...  

Long-term conservation tillage and straw incorporation are reported to improve the soil health, growth, and yield traits of crops; however, little is known regarding the optimal nitrogen (N) supply under conservation tillage with straw incorporation. The present study evaluated the effects of conservation tillage practices (ZTsas: zero tillage plus wheat straw on the soil surface as such, and MTsi: minimum tillage plus wheat straw incorporated) and different N application rates (50, 100, 150, and 200 kg ha−1) on the yield and quality traits of cotton and soil characteristics in a five-year field experiment. The results showed that ZTsas produced a higher number of bolls per plant, boll weight, seed cotton yield, 100-seed weight, ginning out-turn (GOT), fiber length, and strength than MTsi. Among different N application rates, the maximum number of bolls per plant, boll weight, seed cotton yield, GOT, 100-seed weight, fiber length, strength, and micronaire were recorded at 150 kg N ha−1. Averaged over the years, tillage × N revealed that ZTsas had a higher boll number plant−1, boll weight, 100-seed weight, GOT, fiber length, and strength with N application at 150 kg ha−1, as compared to other tillage systems. Based on the statistical results, there is no significant difference in total soil N and soil organic matter among different N rates. Further, compared to MTsi, ZTsas recorded higher soil organic matter (SOM, 8%), total soil N (TSN, 29%), water-stable aggregates (WSA, 8%), and mean weight diameter (MWD, 28.5%), particularly when the N application of 150 kg ha−1. The fiber fineness showed that ZTsas had no adverse impact on fiber fineness compared with MTsi. These results indicate that ZTsas with 150 kg N ha−1 may be the optimum and most sustainable approach to improve cotton yield and soil quality in the wheat–cotton system.


2021 ◽  
pp. 181-186
Author(s):  
Shilpa Manhas ◽  
Janardan Singh ◽  
Ankit Saini ◽  
Tarun Sharma ◽  
Parita K.

A field experiment was conducted during kharif season of 2019 at the Research Farm, Department of Agronomy, CSKHPKV, Palampur to study the effect of tillage and fertilizer doses on growth and growth indices of soybean under conservation tillage systems. The experiment consisted of twelve treatment combinations which included three tillage systems minimum tillage, minimum tillage with crop residue and conventional tillage and four fertility levels viz; 25 % recommended dose of fertilizer (RDF) , 50 %(RDF) , 75 % RDF and 100% RDF and which were tested in split plot design with tillage system in main plots and fertility levels in sub plots.The soil texture of experimental site was silty clay loam. Minimum tillage along with crop residues (T2)recorded significantly taller plants and higher dry matter accumulation followed by conventional tillage. Absolute growth rate, crop growth rate, dry matter efficiency, relative growth rate and unit area efficiency were significantly higher with minimum tillage + crop residue treatment. Application of 100 % followed by 75 % recommended dose of fertilizer resulted in significantly higher growth parameters and growth indices.


2021 ◽  
Vol 24 (4) ◽  
pp. 181-186
Author(s):  
Gholamhussein Shahgholi ◽  
Abdolmajid Moinfar

Abstract The advancement of technology and increasing use of mechanization in agriculture, as well as increasing size of agricultural machinery for farm capacity improvement, have led to soil compaction. In developed countries, various reports of the soil compaction impacts on the reduction of agricultural products have been provided. In developing countries, soil compaction represents a less-known issue and a its destructive nature in agriculture has not been sufficiently addressed. Furthermore, in developed countries, the soil is rich in organic matter due to conservation tillage; however, in Iran, conservation tillage is not possible to perform because of traditional agriculture and using old agricultural machinery. Therefore, plant residues are either removed from fields, or burned. However, sufficient content of organic matter in field can contribute to soil compaction mitigation. The aim of this study was to investigate the effect of percentage of crop residues and their size on soil compaction at different soil moisture contents. For these purposes, five different soil moisture contents (8, 10, 12, 14 and 16% based on dry soil weight) and 4 residue rates at 3 fragmentation sizes were observed in terms of soil compaction. At all different soil moisture contents and residue sizes, with increasing percentage of added straw to the soil, the soil displacement increased. Moreover, as the straw size increased, the initial displacement during compression decreased, e.g., the maximum displacements for straw percentage of 12% and soil moisture of 8% were 64, 62 and 60 mm considering the straw sizes of 1, 2.5 and 5 cm, respectively. With high residue percentage, the final soil density and soil compaction were lower due to the low specific density of straw relative to soil. Furthermore, with high percentage of straw, more deformations and displacements were occurred in the mixture due to large deformation of straws. The density changes of soil-straw mixture were more significant at high residue percentages.


Sign in / Sign up

Export Citation Format

Share Document