phosphorous content
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 31)

H-INDEX

11
(FIVE YEARS 3)

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 242
Author(s):  
Jelena Milešević ◽  
Danijela Vranić ◽  
Mirjana Gurinović ◽  
Vladimir Korićanac ◽  
Branka Borović ◽  
...  

This study provides the data on dietary exposure of Serbian children to nitrites and phosphorus from meat products by combining individual consumption data with available analytical data of meat products. A total of 2603 and 1900 commercially available meat products were categorized into seven groups and analysed for nitrite and phosphorous content. The highest mean levels of nitrite content, expressed as NaNO2, were found in finely minced cooked sausages (40.25 ± 20.37 mg/kg), followed by canned meat (34.95 ± 22.12 mg/kg) and coarsely minced cooked sausages (32.85 ± 23.25 mg/kg). The EDI (estimated daily intake) of nitrites from meat products, calculated from a National Food Consumption Survey in 576 children aged 1–9 years, indicated that the Serbian children population exceeded the nitrite ADI (acceptable daily intake) proposed by EFSA (European Food Safety Authority) in 6.4% of children, with a higher proportion in 1–3-year-old participants. The mean phosphorus concentration varied from 2.71 ± 1.05 g/kg to 6.12 ± 1.33 g/kg in liver sausage and pate and smoked meat products, respectively. The EDI of phosphorus from meat products was far below the ADI proposed by EFSA, indicating that the use of phosphorus additives in Serbian meat products is generally in line with legislation.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3855
Author(s):  
Basheer Aaliya ◽  
Kappat Valiyapeediyekkal Sunooj ◽  
Chillapalli Babu Sri Rajkumar ◽  
Muhammed Navaf ◽  
Plachikkattu Parambil Akhila ◽  
...  

Talipot starch, a non-conventional starch source with a high yield (76%) from the stem pith of talipot palm (Corypha umbraculifera L.) was subjected to three different thermal treatments (dry-heat, heat-moisture and autoclave treatments) prior to phosphorylation. Upon dual modification of starch with thermal treatments and phosphorylation, the phosphorous content and degree of crosslinking significantly increased (p ≤ 0.05) and was confirmed by the increased peak intensity of P=O and P–O–C stretching vibrations compared to phosphorylated talipot starch in the FT-IR spectrum. The highest degree of crosslinking (0.00418) was observed in the autoclave pretreated phosphorylated talipot starch sample. Thermal pretreatment remarkably changed the granule morphology by creating fissures and grooves. The amylose content and relative crystallinity of all phosphorylated talipot starches significantly decreased (p ≤ 0.05) due to crosslinking by the formation of phosphodiester bonds, reducing the swelling power of dual-modified starches. Among all modified starches, dry-heat pretreated phosphorylated starch gel showed an improved light transmittance value of 28.4%, indicating reduced retrogradation tendency. Pasting and rheological properties represented that the thermal pretreated phosphorylated starch formed stronger gels that improved thermal and shear resistance. Autoclave treatment before phosphorylation of talipot starch showed the highest resistant starch content of 48.08%.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3231
Author(s):  
Artur Gryszkin ◽  
Marijana Grec ◽  
Đurđica Ačkar ◽  
Tomasz Zięba ◽  
Antun Jozinović ◽  
...  

The aim of this research was to explore the use of a high-voltage electrical treatment (HVED) as a substitute for heating during the phosphorylation of maize starch. Starch was treated with HVED, phosphorylated with Na2HPO4 or Na5P3O10 with and without thermal treatment and phosphorylated in combination with HVED prior to and after the chemical modification. When starch was phosphorylated with Na2HPO4, HVED was more efficient in catalyzing reaction (3.89 mg P/kg for 30 min HVED in relation to 0.43 mg P/kg for thermal treatment), whereas with Na5P3O10 similar P content was achieved as with thermal treatment (0.76 P/kg for 30 min HVED in relation to 0.86 mg P/kg). The order of HVED and chemical reactions did not have a marked effect on phosphorous content. In combination with Na2HPO4, HVED pre-treatment had a more pronounced effect on the solubility and water absorption, whereas post-treatment was favoured with Na5P3O10. Mean diameter was increased by all treatments, where HVED had a marked effect. Enthalpy of gelatinization ranged from 11.76 J/g for starch treated with Na5P3O10 and 10 min-HVED to 13.58 J/g for Na5P3O10 treated sample. G′ and G″ increased after both thermally and HVED enhanced phosphorylations, with a slightly more pronounced effect of the HVED.


2021 ◽  
Vol 7 (8) ◽  
pp. 584
Author(s):  
Binbin Cai ◽  
Tony Vancov ◽  
Hanqi Si ◽  
Wenru Yang ◽  
Kunning Tong ◽  
...  

Despite their notable root mutualism with blueberries (Vaccinium spp.), studies related to Ericoid mycorrhizal (ERM) are relatively limited. In this study, we report the isolation of 14 endomycorrhizal fungi and their identification by fungal colony morphology characterization combined with PCR-amplified fungal internal transcribed spacer (ITS) sequence analyses. Six of the isolated strains were confirmed as beneficial mycorrhizal fungi for blueberry plants following inoculation. We observed the formation of typical ERM hyphae coil structures—which promote and nutritionally support growth—in blueberry seedlings and significant nitrogen and phosphorous content increases in diverse tissues. QRT-PCRs confirmed changes in VcPHT1s expression patterns. After the formation of ERM, PHT1-1 transcription in roots was upregulated by 1.4- to threefold, whilst expression of PHT1-3 and PHT1-4 in roots were downregulated 72% and 60%, respectively. Amino acid sequence analysis of all four VcPHT1s genes from the blueberry variety “Sharpblue” revealed an overall structural similarity of 67% and predicted transmembrane domains. Cloning and overexpression of PHT1-1 and PHT1-3 genes in transgenic Arabidopsis thaliana plants significantly enriched total phosphorus and chlorophyll content, confirming that PHT1-1 and PHT1-3 gene functions are associated with the transport and absorption of phosphorus.


Author(s):  
S. A. Nadaf ◽  
A. R. Bora

Coffee growing areas in Andhra Pradesh and Orissa (non-traditional area - NTA) are characterized by undulating topography with terraced slopes having narrow valleys with scattered coffee farms across the elevation of the Eastern Ghats of Vishakhapatnam (Andhra Pradesh) and Koraput (Orissa) districts. Under this situation plant available nutrients will become non-available and the nutrients are stored in several pools as inorganic and organic forms in soil exchange complex are very much essential for coffee plants for its growth and development. Hence, a study was conducted to know the soil nutrient status of coffee growing region of NTA. A total of 693 surface soil samples were collected at depth of 22cm randomly from each coffee growing mandals of NTA and assessed the nutrient status (soil pH, OC, available P and K) at Regional Coffee Research Station, Narsipatnam. Results of the soil test results indicated that most of the Arabica coffee soils of NTA are acidic in reaction (72 %) and soil pH > 6.0 in these soils was 28 % in the tested soils. Plant available phosphorous (P) in the soil is low with 33 % soils and 46 % of the soils are medium in range. However, only 21 % of the soils tested are high in available phosphorous content in these soils. The majority of the soils of this region are high in available potassium about 54 % and 31 % of the soils are medium in range but only 15 % of the soils are low in available K status. Coffee soils of NTA are rich in organic carbon status and almost 47 %. 33 % of the tested soils are medium in range but 19 % of soils were low in organic carbon status. Soils are slightly acidic in reaction and were rich in organic carbon and available potassium status.


2021 ◽  
Author(s):  
Minerva García-Carmona ◽  
Victoria Arcenegui ◽  
Fuensanta García-Orenes ◽  
Jorge Mataix-Solera

<p>After wildfires in Mediterranean forests, mosses have been described as faster colonizers in early successional stages when soil surface is more vulnerable and exposed to rainfall events. Soil erosion mitigation is an ecosystem service of high relevance provided by moss-dominated biocrusts, but information about additional functional roles of early post-fire colonization of mosses is still limited. In August 2018, a wildfire in “Sierra de Beneixama” (E Spain) affecting a total of 862 ha was followed by salvage logging management that triggered rill formation and soil erosion processes. Six months after the fire and subsequent management disturbances, the presence of mosses covering the soil reached 30%, appearing where no soil water repellency was detected. The aim of the study was to assess the short-term effects of mosses on the nutrients content and the stability of soils underlying the crust (2.5 cm depth), as well as the soil microorganisms and functions they deliver as key elements in soil recovery. Our results showed a strong decrease in the available phosphorous content in soils under the crust, suggesting consumption of this element released from the fire to moss development. In the same way, a slight decrease in soil organic carbon and nitrogen content was detected in soils beneath the biocrust. The labile fraction of organic carbon released by the fire may provide the substrate for heterotrophic soil microbes living beneath the biocrust, but while a beginning recovery of microbial biomass under mosses was observed, no higher microbial activity was detected six months after the fire. No greater differences in the microbial functionality, measured by enzymatic activities involved in carbon, nitrogen, and phosphorus cycles, were observed in soils associated with the crust. However, the response of the microbial parameters was mainly influenced by the nitrogen and phosphorous content of soils, highly released in post-fire environments. The lower developmental stage of the biocrust and the short-time since the disturbance might be an important factor in the functional recovery of the microbial community associated. Since wildfires are predicted to increase in frequency and severity due to climate change, monitoring biocrust impact on ecological functions recovery is essential to understand ecosystem resistance and resilience to future disturbances.</p><p> </p><p>This work was supported by funding by the “POSTFIRE_CARE” project of the Spanish Research Agency (AIE) and the European Union through European Funding for Regional Development (FEDER) [Ref.: CGL2016-75178-C2-1-R], and the Spanish Ministry of Economy and Competitiveness [grant FPI-MINECO BES-2017-081283 supporting M.G-C].</p>


2021 ◽  
Author(s):  
Jessica Cuartero ◽  
Jose Antonio Pascual ◽  
Juana-María Vivo ◽  
Onurcan Özbolat ◽  
Virginia Sánchez-Navarro ◽  
...  

Abstract A greater understanding of the relationship between soil microorganisms and intercropping systems could contribute to the optimization of land use, fostering sustainable and efficient agriculture. This study entails a comparative intercropping assay using cowpea (Vigna unguiculata) and melon (Cucumis melo) under organic management with different patterns and 30% less organic fertilization than that used in monocrops in the first year. The intercropping system changed the bacterial community structure independently of the intercropping pattern and contributed to an increase in soil nitrogen, phosphorous content and melon crop yield. The intercropped systems were characterized by a higher abundance of Pseudomonas (Proteobacteria), which are related to nutrient cycling, and other beneficial microorganisms.


Sign in / Sign up

Export Citation Format

Share Document