Analysis and understanding of butterfly community composition based on multivariate approaches and the concept of generalist/specialist strategies

2005 ◽  
Vol 8 (2) ◽  
pp. 137-149 ◽  
Author(s):  
Masahiko KITAHARA ◽  
Koichi FUJII
2016 ◽  
Vol 33 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Anu Valtonen ◽  
Geoffrey M. Malinga ◽  
Margaret Nyafwono ◽  
Philip Nyeko ◽  
Arthur Owiny ◽  
...  

Abstract:The relative importance of different bottom-up-mediated effects in shaping insect communities in tropical secondary forests are poorly understood. Here, we explore the roles of vegetation structure, forest age, local topography (valley vs. hill top) and soil variables in predicting fruit-feeding butterfly and tree community composition, and tree community composition in predicting fruit-feeding butterfly community composition, in different-aged naturally regenerating and primary forests of Kibale National Park, Uganda. We also examine which variables are best predictors of fruit-feeding butterfly species richness or diversity. Butterflies (88 species) were sampled with a banana-baited trap and trees (98 taxa) with a 40 × 20-m sampling plot at 80 sampling sites. The environmental variables explained 31% of the variation in the tree community composition, the best predictors being local topography, forest age and cover of Acanthus pubescens (a shrub possibly arresting succession). The fruit-feeding butterfly community composition was better predicted by tree community composition (explaining 10% of the variation) rather than vegetation structure, local topography or soil factors. Environmental variables and tree species richness (or diversity) were poor predictors of butterfly species richness (or diversity). Our results emphasize the importance of tree community to recovery of herbivorous insect communities in tropical secondary forests.


Biotropica ◽  
2014 ◽  
Vol 46 (2) ◽  
pp. 210-218 ◽  
Author(s):  
Margaret Nyafwono ◽  
Anu Valtonen ◽  
Philip Nyeko ◽  
Heikki Roininen

2015 ◽  
Vol 24 (6) ◽  
pp. 1473-1485 ◽  
Author(s):  
Margaret Nyafwono ◽  
Anu Valtonen ◽  
Philip Nyeko ◽  
Arthur Arnold Owiny ◽  
Heikki Roininen

2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


Sign in / Sign up

Export Citation Format

Share Document