rainfall regimes
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 26)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Caitlin M. Broderick ◽  
Kate Wilkins ◽  
Melinda D. Smith ◽  
John M. Blair
Keyword(s):  

2021 ◽  
Vol 206 ◽  
pp. 108332
Author(s):  
Miriam Fernández-Gonzalvo ◽  
Carmen Hernández-Crespo ◽  
Miguel Martín ◽  
Ignacio Andrés-Doménech

Author(s):  
Valentin Brice Ebodé ◽  
Gil Mahé ◽  
Ernest Amoussou

Abstract. L'objectif de cet article est de faire une évaluation des tendances récentes des grandeurs hydroclimatiques dans le bassin de l'Ogooué en contexte de changement climatique. Pour cela, les données de pluies et de débits de ce bassin ont été analysées au moyen du test de Pettitt. Les résultats de cette étude révèlent une diminution statistiquement significative des modules annuels que le test de Pettitt situe en 1972–1973, mais rien de tel pour les pluies à ce même pas de temps. Les écarts des moyennes décennales à la moyenne interannuelle montrent cependant des liens plus nets entre ces variables, se traduisant essentiellement par une diminution synchrone au cours des décennies 1970 et 1980. Cette diminution est suivie d'une reprise au cours des deux décennies d'après (1990 et 2000), laquelle s'estompe à nouveau au cours de la décennie 2010. Les écoulements des saisons pluvieuses (printemps et automne) ont enregistré les modifications les plus importantes, suite aux variations des régimes pluviométriques des saisons sèches (hiver et été) qui les précèdent. La saison sèche d'hiver a connu entre les décennies 1970–1990 une diminution importante des précipitations qui a provoquée une chute des écoulements du printemps. Le rehaussement et la flexion respectivement notés au cours des décennies 2000 et 2010 s'accompagnent des mêmes tendances dans les écoulements du printemps. A l'inverse, entre les décennies 1980–1990, il a été noté une hausse conjointe des pluies d'été et des écoulements d'automne. La flexion des pluies d'été notée depuis la décennie 2000 est également perceptible dans les écoulements d'automne. Ces résultats pourraient servir à renforcer les capacités de gestion des ressources en eau dans le bassin versant concerné et dans la région. Ils apportent également de nouveaux éléments pour étudier et comprendre la variation saisonnière et la disponibilité de l'eau douce en aval, dans les estuaires et les zones côtières des rivières régionales. The objective of this article is to assess recent trends of hydroclimatic quantities in Ogooue basin in the context of climate change. For this, the rainfall and discharges data of this basin were analyzed using the Pettitt test. The results of this study reveal a statistically significant decrease in runoff that the Pettitt test situates in 1972–1973, but nothing like that for rainfall at this same time scale. The decadal deviations from the interannual average, however show links between these variables essentially marked by a synchronous decrease in the 1970s and 1980s. This decrease is followed by a recovery in the two decades following (1990 and 2000), which stops again during the 2010s. The flow of the rainy seasons (Spring and Autumn) recorded the most important modifications, following variations in the rainfall regimes of the dry seasons (Winter and Summer) which precede them. The dry Winter season experienced a significant decrease in precipitation between the 1970s and 1990s, which caused a decrease in Spring flows. The increase and flexion noted respectively during the 2000 and 2010 decades are accompanied by the same trends in Spring flows. Conversely, between the 1980s and the 1990s, there was a joint increase in Summer rainfall and Autumn flows. The decrease of Summer rainfall noted since the 2000s is also noticeable in the Autumn flows. These results could be used to strengthen water resources management capacities in the watershed concerned and the region. They also provide new insights to study and understand seasonal variation and availability of freshwater downstream, in estuaries and coastal areas of regional rivers.


2021 ◽  
Vol 10 (10) ◽  
pp. 689
Author(s):  
Muhamad Afdal Ahmad Basri ◽  
Shazlyn Milleana Shaharudin ◽  
Kismiantini ◽  
Mou Leong Tan ◽  
Sumayyah Aimi Mohd Najib ◽  
...  

Monthly precipitation data during the period of 1970 to 2019 obtained from the Meteorological, Climatological and Geophysical Agency database were used to analyze regionalized precipitation regimes in Yogyakarta, Indonesia. There were missing values in 52.6% of the data, which were handled by a hybrid random forest approach and bootstrap method (RF-Bs). The present approach addresses large missing values and also reduces the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) in the search for the optimum minimal value. Cluster analysis was used to classify stations or grid points into different rainfall regimes. Hierarchical clustering analysis (HCA) of rainfall data reveal the pattern of behavior of the rainfall regime in a specific region by identifying homogeneous clusters. According to the HCA, four distinct and homogenous regions were recognized. Then, the principal component analysis (PCA) technique was used to homogenize the rainfall series and optimally reduce the long-term rainfall records into a few variables. Moreover, PCA was applied to monthly rainfall data in order to validate the results of the HCA analysis. On the basis of the 75% of cumulative variation, 14 factors for the Dry season and the Rainy season, and 12 factors for the Inter-monsoon season, were extracted among the components using varimax rotation. Consideration of different groupings into these approaches opens up new advanced early warning systems in developing recommendations on how to differentiate climate change adaptation- and mitigation-related policies in order to minimize the largest economic damage and taking necessary precautions when multiple hazard events occur.


2021 ◽  
Author(s):  
Chung-Chieh Wang ◽  
Pi-Yu Chuang ◽  
Shi-Ting Chen ◽  
Dong-In Lee ◽  
Kazuhisa Tsuboki

Abstract. In this study, idealized cloud-resolving simulations are performed for horizontally uniform and steady southwesterly flow at fixed direction/speed combinations to investigate rainfall characteristics and the role of the complex topography in Taiwan during the Mei-yu season, without the influence of a front or other disturbances. Eight directions (180° to 285°, every 15°) and eight speeds (5 to 22.5 m s−1, every 2.5 m s−1) are considered, and near-surface relative humidity (RH) is also altered (from 55–100 %) in a subset of these tests to further investigate the effects of moisture content, yielding a total 109 experiments each having a integration length of 50 h. Three rainfall regimes that correspond to different ranges of the wet Froude number (Frw) are identified from the idealized simulations (with a grid size of 2 km). The low-Frw regime (Frw ≤ ~0.3) where the island circulation from thermodynamic effects during daytime is the main cause of rainfall in local afternoon. The lower the wind speed (and Frw), the more widespread and amount of rainfall. On the other hand, the high-Frw regime (Frw ≥ ~0.4) occurs when the flow at least 12.5 m s−1 impinges on Taiwan terrain at a large angle to favor the flow-over scenario. Thus, topographic rainfall production becomes dominant through mechanical uplift of unstable air. In this scenario, the faster and wetter the flow, the heavier the rainfall on the windward slopes, with the most favorable direction from 240°–255°. Between the two regimes above, a third and mixed regime also exists. The idealized results are discussed for their applicability to the real atmosphere.


2021 ◽  
Vol 1 (1) ◽  
pp. 55-65
Author(s):  
C. S. Hüseynov

Abstract: The article examines the impact of global climate change on rainfall regimes in lankaran natural province. The study used rainfall and temperature monitoring data from 5 meteorological stations registered for 1991-2016. Different (month, section, seasonal, and annual) rainfall indicators were compared with the same quantities of 1961-1990. Multiculturalism was examined over two periods (1991-2004-I, 2005-2016-II). based on the research, the average annual temperature in the province over the past 25 years is 14-16°C at the coastal and adjacent stations, 11-13°C in the lowlands, and 8-10°C in the middle. however, the average annual temperature has increased by 0.7°C compared to 1961-1990. Over the years, precipitation has been distributed over a wide range (330-1220 mm), depending on the stations. During the period from 1991 to 2016, annual rainfall increased slightly at Kelvez station, but decreased by 9% compared to the norm at other stations (1961- 1990). Keywords: Climate change, mitigation, concentration, ecodynamics, amplitude, evolution, norma value, correlation, interpolation, trend.


Author(s):  
Haiyan Fang

Cultivated land plays an important role in water and soil loss in earthy/rocky mountainous regions in northern China, however, its response to soil conservation measures and rainfall characteristics are still not fully understood. In the present study, 85 erosive rainfall events in 2011–2019 were grouped into three types, and the responses of runoff and soil loss to soil conservation measures and rainfall regimes on five cultivated plots with different slopes in the upstream catchment of the Miyun Reservoir were evaluated. Results found that mean event runoff depths and soil loss rates on the five plots ranged from 0.03 mm to 7.05 mm and from 0.37 t km−2 to 300.51 t km−2 respectively, depending on rainfall regimes, soil conservation measures, and slope gradients. The high frequency (i.e., 72.94%) rainfall regime A with a short rainfall duration (RD), low rainfall amount (P), and high mean rainfall intensity (Im) yielded a lower runoff depth and higher soil loss rate. Rainfall regime B with a longer RD, and a higher P and Im, however, produced higher a runoff depth and lower soil loss rate. Terraced plots had the highest runoff and soil loss reduction efficiencies of over 96.03%. Contour tillage had comparable sediment reduction efficiency to that of the terraced plots on gentle slopes (gradient less than 11.0%), while its runoff reduction efficiency was less than 13.11%. This study implies that in the Miyun Reservoir catchment and similar regions in the world, contour tillage should be promoted on gentle slopes, and the construction of terraced plots should be given ample consideration as they could greatly reduce water quantity and cause water shortages in downstream catchments.


Author(s):  
Haiyan Fang

Cultivated land plays an important role in water and soil loss in the earth-rocky mountainous region, northern China, however, its responses to soil control measures and rainfall characteristics are still not fully understood. In this study, 85 erosive rainfall events in 2011-2019 were grouped into three types, and the responses of runoff and soil loss on five cultivated plots with different slopes in the upstream catchment of the Miyun Reservoir to soil conservation measures and rainfall regimes were evaluated. Results found that event-averaged runoff depths and soil loss rates on the five plots ranged from 7.05 mm to 0.03 mm and from 300.51 t km-2 to 0.37 t km-2 respectively, depending on rainfall regimes, soil conservation measures, and slope gradients. The high occurring frequency (i.e., 72.94%) rainfall regime A with short rainfall duration (RD), low rainfall amount (P), and high mean rainfall intensity (Im) yielded lower runoff depth and higher soil loss rate. Rainfall regime B with longer RD, and higher P and Im, however, produced higher rainfall depth and lower soil loss rate. Terraced plot had the highest runoff and soil loss reduction efficiencies of over 96.03%. Contour tillage had comparable sediment reduction efficiency to that of the terraced plot on gentle slopes (gradient less than 11.0%), while its runoff reduction efficiency was less than 13.11%. This study implies that in the Miyun Reservoir catchment and similar regions in the world, contour tillage should be promoted on gentle slopes, and terrace construction should be given enough attention since it can greatly reduce water quantity and cause water shortage in downstream catchments.


Sign in / Sign up

Export Citation Format

Share Document