Small Subunit Ribosomal DNA Phylogeny of Various Microsporidia with Emphasis on AIDS Related Forms

1995 ◽  
Vol 42 (5) ◽  
pp. 564-570 ◽  
Author(s):  
MICHAEL D. BAKER ◽  
CHARLES R. VOSSBRINCK ◽  
ELIZABETH S. DIDIER ◽  
JOSEPH V. MADDOX ◽  
JOHN A. SHADDUCK
Parasitology ◽  
2002 ◽  
Vol 124 (4) ◽  
pp. 381-389 ◽  
Author(s):  
D. REFARDT ◽  
E. U. CANNING ◽  
A. MATHIS ◽  
S. A. CHENEY ◽  
N. J. LAFRANCHI-TRISTEM ◽  
...  

Glugoides intestinalis, Microsporidium sp., Ordospora colligata, Gurleya vavrai, Larssonia obtusa and Flabelliforma magnivora are microsporidian parasites of planctonic freshwater crustaceans Daphnia spp. We performed a phylogenetic analysis of the small subunit ribosomal DNA which revealed their positions as polyphyletic. G. intestinalis, Microsporidium sp. and O. colligata, which are horizontally transmitted gut parasites with small spores and low virulence, group with different lineages. G. intestinalis is related to 2 microsporidia infecting lepidopterans and to Vittaforma corneae, which has been described as a human pathogen. It is thought that V. corneae may have an invertebrate as its natural host. Microsporidium sp. is a relative of the genera Enterocytozoon and Nucleospora, pathogens of man and fish respectively. O. colligata is the first species found to be closely related to the genus Encephalitozoon, which is comprised of 3 species that are parasites of homeothermic vertebrates. G. vavrai and L. obtusa are sister taxa that branch close to the Amblyosporidae, the only microsporidia with known intermediate hosts. This finding supports the presumption of secondary hosts for G. vavrai and L. obtusa, as it has not been possible to maintain these species in Daphnia in the laboratory. F. magnivora roots deep at the base of the phylum microsporidia with no close relative found so far.


Nematology ◽  
2003 ◽  
Vol 5 (5) ◽  
pp. 699-711 ◽  
Author(s):  
Peter Mullin ◽  
Timothy Harris ◽  
Thomas Powers

AbstractThe systematic position of Campydora Cobb, 1920, which possesses many unique morphological features, especially in pharyngeal structure and stomatal armature, has long been a matter of uncertainty with the 'position of the Campydorinae' (containing only Campydora) being questionable. A review of the morphology of C. demonstrans, the only nominal species of Campydora concluded that the species warranted placement as the sole member of a monotypic suborder, Campydorina, in the order Dorylaimida. Others placed Campydorina in the order Enoplida. We conducted phylogenetic analyses, using 18s small subunit ribosomal DNA sequences generated from a number of taxa in the subclasses Enoplia and Dorylaimia, to evaluate these competing hypotheses. Although precise taxonomic placement of the genus Campydora and the identity of its closest living relatives is in need of further investigation, our analyses, under maximum parsimony, distance, and maximum likelihood criteria, unambiguously indicate that Campydora shares a common, more recent, ancestry with genera such as Alaimus, Pontonema, Tripyla and Ironus (Enoplida), rather than with any members of Dorylaimida, Mononchida or Triplonchida.


2020 ◽  
Vol 8 (3) ◽  
pp. 316 ◽  
Author(s):  
Yurui Wang ◽  
Yaohan Jiang ◽  
Yongqiang Liu ◽  
Yuan Li ◽  
Laura A. Katz ◽  
...  

While nuclear small subunit ribosomal DNA (nSSU rDNA) is the most commonly-used gene marker in studying phylogeny, ecology, abundance, and biodiversity of microbial eukaryotes, mitochondrial small subunit ribosomal DNA (mtSSU rDNA) provides an alternative. Recently, both copy number variation and sequence variation of nSSU rDNA have been demonstrated for diverse organisms, which can contribute to misinterpretation of microbiome data. Given this, we explore patterns for mtSSU rDNA among 13 selected ciliates (representing five classes), a major component of microbial eukaryotes, estimating copy number and sequence variation and comparing to that of nSSU rDNA. Our study reveals: (1) mtSSU rDNA copy number variation is substantially lower than that for nSSU rDNA; (2) mtSSU rDNA copy number ranges from 1.0 × 104 to 8.1 × 105; (3) a most common sequence of mtSSU rDNA is also found in each cell; (4) the sequence variation of mtSSU rDNA are mainly indels in poly A/T regions, and only half of species have sequence variation, which is fewer than that for nSSU rDNA; and (5) the polymorphisms between haplotypes of mtSSU rDNA would not influence the phylogenetic topology. Together, these data provide more insights into mtSSU rDNA as a powerful marker especially for microbial ecology studies.


Sign in / Sign up

Export Citation Format

Share Document