scholarly journals KIN SELECTION, LOCAL COMPETITION, AND REPRODUCTIVE SKEW

Evolution ◽  
2008 ◽  
Vol 62 (10) ◽  
pp. 2592-2599 ◽  
Author(s):  
Rufus A. Johnstone
2021 ◽  
Vol 288 (1965) ◽  
Author(s):  
Thomas J. Hitchcock ◽  
Andy Gardner

Recent years have seen an explosion of theoretical and empirical interest in the role that kin selection plays in shaping patterns of sexual conflict, with a particular focus on male harming traits. However, this work has focused solely on autosomal genes, and as such it remains unclear how demography modulates the evolution of male harm loci occurring in other portions of the genome, such as sex chromosomes and cytoplasmic elements. To investigate this, we extend existing models of sexual conflict for application to these different modes of inheritance. We first analyse the general case, revealing how sex-specific relatedness, reproductive value and the intensity of local competition combine to determine the potential for male harm. We then analyse a series of demographically explicit models, to assess how dispersal, overlapping generations, reproductive skew and the mechanism of population regulation affect sexual conflict across the genome, and drive conflict between nuclear and cytoplasmic genes. We then explore the effects of sex biases in these demographic parameters, showing how they may drive further conflicts between autosomes and sex chromosomes. Finally, we outline how different crossing schemes may be used to identify signatures of these intragenomic conflicts.


2017 ◽  
Vol 114 (20) ◽  
pp. 5207-5212 ◽  
Author(s):  
Faye J. Thompson ◽  
Michael A. Cant ◽  
Harry H. Marshall ◽  
Emma I. K. Vitikainen ◽  
Jennifer L. Sanderson ◽  
...  

Kin selection theory predicts that, where kin discrimination is possible, animals should typically act more favorably toward closer genetic relatives and direct aggression toward less closely related individuals. Contrary to this prediction, we present data from an 18-y study of wild banded mongooses, Mungos mungo, showing that females that are more closely related to dominant individuals are specifically targeted for forcible eviction from the group, often suffering severe injury, and sometimes death, as a result. This pattern cannot be explained by inbreeding avoidance or as a response to more intense local competition among kin. Instead, we use game theory to show that such negative kin discrimination can be explained by selection for unrelated targets to invest more effort in resisting eviction. Consistent with our model, negative kin discrimination is restricted to eviction attempts of older females capable of resistance; dominants exhibit no kin discrimination when attempting to evict younger females, nor do they discriminate between more closely or less closely related young when carrying out infanticidal attacks on vulnerable infants who cannot defend themselves. We suggest that in contexts where recipients of selfish acts are capable of resistance, the usual prediction of positive kin discrimination can be reversed. Kin selection theory, as an explanation for social behavior, can benefit from much greater exploration of sequential social interactions.


2019 ◽  
Vol 28 (4) ◽  
pp. 195-208
Author(s):  
Katherine Reifurth ◽  
Matthew Bernthal ◽  
Khalid Ballouli ◽  
Dorothy Collins

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 955
Author(s):  
Uwe Grueters ◽  
Mohd Rodila Ibrahim ◽  
Hartmut Schmidt ◽  
Katharina Tiebel ◽  
Hendrik Horn ◽  
...  

(1,2) In this theoretical study, we apply MesoFON, a field-calibrated individual-based model of mangrove forest dynamics, and its Lotka–Volterra interpretations to address two questions: (a) Do the dynamics of two identical red mangrove species that compete for light resources and avoid inter-specific competition by lateral crown displacement follow the predictions of classical competition theory or resource competition theory? (b) Which mechanisms drive the dynamics in the presence of inter-specific crown plasticity when local competition is combined with global or with localized seed dispersal? (3) In qualitative support of classical competition theory, the two species can stably coexist within MesoFON. However, the total standing stock at equilibrium matched the carrying capacity of the single species. Therefore, a “non-overyielding” Lotka–Volterra model rather than the classic one approximated best the observed behavior. Mechanistically, inter-specific crown plasticity moved heterospecific trees apart and pushed conspecifics together. Despite local competition, the community exhibited mean-field dynamics with global dispersal. In comparison, localized dispersal slowed down the dynamics by diminishing the strength of intra-/inter-specific competition and their difference due to a restriction in the competitive race to the mean-field that prevails between conspecific clusters. (4) As the outcome in field-calibrated IBMs is mediated by the competition for resources, we conclude that classical competition mechanisms can override those of resource competition, and more species are likely to successfully coexist within communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James P. Higham ◽  
Michael Heistermann ◽  
Muhammad Agil ◽  
Dyah Perwitasari-Farajallah ◽  
Anja Widdig ◽  
...  

AbstractHigh social status is the primary determinant of reproductive success among group-living male mammals. Primates living in multimale–multifemale groups show the greatest variation in the strength of this link, with marked variation in reproductive skew by male dominance among species, dependent on the degree of female fertile phase synchrony, and the number of competing males. Here, we present data on two groups of wild crested macaques (Macaca nigra), living in the Tangkoko Reserve, Sulawesi, Indonesia. We investigated male monopolization of fertile females in 31 cycles of 19 females, and genetic paternity of 14 offspring conceived during the study period. We show that female fertile phase synchrony was low, that females had few mating partners in their fertile phase, and that dominant males monopolized a high proportion of consortships and matings, resulting in marked and steep mating and reproductive skew. We conclude that female cycle asynchrony provides the opportunity for strong direct male–male competition in crested macaques, resulting in monopolization of females by dominant males, consistent with their marked sexual dimorphism. Our study provides a test of the underlying factors that determine the relative occurrence and strength of different mechanisms of sexual selection, and the phenotypes that evolve as a result.


Sign in / Sign up

Export Citation Format

Share Document