Thymic aging and T-cell regeneration

1997 ◽  
Vol 160 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Crystal L Mackall ◽  
Ronald E. Gress
2007 ◽  
Vol 39 (3) ◽  
pp. 149-156 ◽  
Author(s):  
H Olkinuora ◽  
K Talvensaari ◽  
T Kaartinen ◽  
S Siitonen ◽  
U Saarinen-Pihkala ◽  
...  

Author(s):  
Enrico Velardi ◽  
Jennifer J. Tsai ◽  
Marcel R. M. van den Brink
Keyword(s):  
T Cell ◽  

Blood ◽  
1993 ◽  
Vol 82 (8) ◽  
pp. 2585-2594 ◽  
Author(s):  
CL Mackall ◽  
L Granger ◽  
MA Sheard ◽  
R Cepeda ◽  
RE Gress

Abstract To study the source of regenerated T cells after bone marrow transplantation (BMT), lethally irradiated thymectomized and thymus- bearing C57BL/6 (Thy 1.2+) mice were injected with syngeneic T-cell depleted bone marrow (TCD BM) cells and graded numbers of congenic B6/Thy 1.1+ lymph node (LN) cells. LN cell expansion was the predominant source for T-cell regeneration in thymectomized hosts but was minimal in thymus-bearing hosts. Analysis of T-cell receptor (TCR) expression on LN progeny showed a diverse V beta repertoire. Therefore, peripheral T-cell progenitors exist within V beta families, but expansion of these progenitors after BMT is downregulated in the presence of a functional thymus. CD4+ cells derived from BM versus LN in thymus-bearing hosts displayed differential CD44 and CD45 isoform expression. BM-derived cells were primarily CD45RB+CD44lo and LN derived cells were nearly exclusively CD45RB- CD44hi. In thymectomized hosts, BM, host, and LN CD4+ progeny were CD45RB- CD44hi. We conclude that T-cell regeneration via peripheral T-cell progenitors predominates in hosts lacking thymic function and gives rise to T cells that display a “memory” phenotype. In contrast, the ability to generate sizable populations of “naive” type T cells after BMT appears limited to the prethymic progenitor pool and could serve as a marker for thymic regenerative capacity.


Blood ◽  
2001 ◽  
Vol 97 (5) ◽  
pp. 1491-1497 ◽  
Author(s):  
Crystal L. Mackall ◽  
Terry J. Fry ◽  
Cathy Bare ◽  
Paul Morgan ◽  
Anne Galbraith ◽  
...  

Thymic-dependent differentiation of bone marrow (BM)-derived progenitors and thymic-independent antigen-driven peripheral expansion of mature T cells represent the 2 primary pathways for T-cell regeneration. These pathways are interregulated such that peripheral T-cell expansion is increased in thymectomized versus thymus-bearing hosts after bone marrow transplantation (BMT). This study shows that this interregulation is due to competition between progeny of these 2 pathways because depletion of thymic progeny leads to increased peripheral expansion in thymus-bearing hosts. To test the hypothesis that competition for growth factors modulates the magnitude of antigen-driven peripheral expansion during immune reconstitution in vivo, a variety of T-cell active cytokines were administered after BMT. Of the cytokines (interleukins) tested (IL-3, IL-12, IL-6, IL-2, and IL-7), IL-2 modestly increased peripheral expansion in the face of increasing numbers of thymic emigrants, whereas IL-7 potently accomplished this. This report also demonstrates that the beneficial effect of IL-7 on immune reconstitution is related to both increases in thymopoiesis as well as a direct increase in the magnitude of antigen-driven peripheral expansion. Therefore, the administration of exogenous IL-7, and to a lesser extent IL-2, abrogates the down-regulation in antigen-driven peripheral expansion that occurs in thymus-bearing hosts after BMT. These results suggest that one mechanism by which T-cell–depleted hosts may support antigen-driven T-cell expansion in vivo is via an increased availability of T-cell–active cytokines to support clonal expansion.


Blood ◽  
1993 ◽  
Vol 82 (8) ◽  
pp. 2585-2594 ◽  
Author(s):  
CL Mackall ◽  
L Granger ◽  
MA Sheard ◽  
R Cepeda ◽  
RE Gress

To study the source of regenerated T cells after bone marrow transplantation (BMT), lethally irradiated thymectomized and thymus- bearing C57BL/6 (Thy 1.2+) mice were injected with syngeneic T-cell depleted bone marrow (TCD BM) cells and graded numbers of congenic B6/Thy 1.1+ lymph node (LN) cells. LN cell expansion was the predominant source for T-cell regeneration in thymectomized hosts but was minimal in thymus-bearing hosts. Analysis of T-cell receptor (TCR) expression on LN progeny showed a diverse V beta repertoire. Therefore, peripheral T-cell progenitors exist within V beta families, but expansion of these progenitors after BMT is downregulated in the presence of a functional thymus. CD4+ cells derived from BM versus LN in thymus-bearing hosts displayed differential CD44 and CD45 isoform expression. BM-derived cells were primarily CD45RB+CD44lo and LN derived cells were nearly exclusively CD45RB- CD44hi. In thymectomized hosts, BM, host, and LN CD4+ progeny were CD45RB- CD44hi. We conclude that T-cell regeneration via peripheral T-cell progenitors predominates in hosts lacking thymic function and gives rise to T cells that display a “memory” phenotype. In contrast, the ability to generate sizable populations of “naive” type T cells after BMT appears limited to the prethymic progenitor pool and could serve as a marker for thymic regenerative capacity.


1983 ◽  
Vol 53 (3) ◽  
pp. 451-458 ◽  
Author(s):  
D. C. Linch ◽  
L. J. Knott ◽  
R.M. Thomas ◽  
P. Harper ◽  
A. H. Goldstone ◽  
...  

2010 ◽  
Vol 17 (4) ◽  
pp. 327-332 ◽  
Author(s):  
Génève Awong ◽  
Ross LaMotte-Mohs ◽  
Juan Carlos Zúñiga-Pflücker
Keyword(s):  
T Cell ◽  

Sign in / Sign up

Export Citation Format

Share Document