Influence of Lithium on Cyclic AMP Accumulation in Isolated Rat Fat Cells

2009 ◽  
Vol 45 (5) ◽  
pp. 329-335 ◽  
Author(s):  
P. Thams ◽  
A. Geisler
1985 ◽  
Vol 232 (2) ◽  
pp. 439-443 ◽  
Author(s):  
J A García-Sáinz ◽  
M L Torner

Activation of rat adipocyte R1 adenosine receptors by phenylisopropyladenosine (PIA) decreased cyclic AMP and lipolysis; this effect was blocked in cells from pertussis-toxin-treated rats. In contrast, the ability of 2′,5′-dideoxyadenosine to decrease cyclic AMP was not affected by pertussis-toxin treatment. Addition of adenosine deaminase to the medium in which adipocytes from control animals were incubated resulted in activation of lipolysis. Interestingly, adipocytes from toxin-treated rats (which had an already increased basal lipolysis) responded in an opposite fashion to the addition of adenosine deaminase, i.e. the enzyme decreased lipolysis, which suggested that adenosine might be increasing lipolysis in these cells. Studies with the selective agonists N-ethylcarboxamidoadenosine (NECA) and PIA indicated that adenosine increases lipolysis and cyclic AMP accumulation in these cells and that these actions are mediated through Ra adenosine receptors. Adenosine-mediated accumulation of cyclic AMP was also observed in cells preincubated with pertussis toxin (2 micrograms/ml) for 3 h. In these studies NECA was also more effective than PIA. Our results indicate that there are three types of adenosine receptors in fat-cells, whose actions are affected differently by pertussis toxin, i.e. Ri-mediated actions are abolished, Ra-mediated actions are revealed and P-mediated actions are not affected.


1974 ◽  
Vol 142 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Kenneth Siddle ◽  
C. Nicholas Hales

The relationship between cyclic AMP content and lipolysis, as measured by glycerol formation, was studied in isolated rat fat-cells. Inhibition of lipolysis by insulin in the presence of a low concentration of adrenaline was accompanied by little or no lowering of cyclic AMP content, measured after 15min incubation. The time-course of cyclic AMP content after addition of adrenaline showed that the effect of insulin in lowering cyclic AMP content measured after 2–5min was gradually lost over the next hour, mainly because of the fall in cyclic AMP content after an early peak in the presence of adrenaline alone. There was a 44% loss of immunoreactive insulin, from an initial concentration of 0.3nm, during a 1h incubation with fat-cells. Insulin did not affect partitioning of cyclic AMP between cells and incubation medium. When the correlation between cyclic AMP content and rate of lipolysis was investigated for a wide range of adrenaline concentrations, it was found that the lowering of cyclic AMP content by insulin was much less than that required to account for the amount of inhibition of lipolysis. It is concluded that inhibition of adrenaline-stimulated lipolysis by insulin involves factors in addition to a decrease in intracellular cyclic AMP concentration.


1974 ◽  
Vol 142 (2) ◽  
pp. 345-351 ◽  
Author(s):  
Kenneth Siddle ◽  
C. Nicholas Hales

1. Local anaesthetics inhibited hormone-stimulated lipolysis in isolated rat fat-cells. The most potent anaesthetic was dibucaine, which inhibited adrenaline-stimulated lipolysis by 50% at a concentration of 0.16mm. 2. The amount of inhibition produced by a given concentration of anaesthetic was very similar with adrenaline, theophylline and dibutyryl cyclic AMP, at submaximal and maximal concentrations. 3. The inhibitory effect of dibucaine on lipolysis was apparent within 5 min and was constant over 1h. 4. Dibucaine inhibited basal, adrenaline-stimulated and insulin-stimulated glucose uptake at concentrations 6–10-fold higher than those inhibiting lipolysis. 5. The effects of dibucaine on lipolysis and glucose uptake were reversed after removal of anaesthetic and washing of cells. 6. Dibucaine further elevated the concentration of cyclic AMP in the presence of adrenaline or adrenaline plus theophylline. 7. Dibucaine had no effect on ATP content at concentrations causing 80% inhibition of lipolysis, but lowered ATP content at higher concentrations. 8. The relative potency of different local anaesthetics as inhibitors of hormone-stimulated lipolysis paralleled their potency as inhibitors of ion movements in other systems. 9. The possibility is discussed that Ca2+ions are involved in the regulation of lipolysis, and that local anaesthetics inhibit lipolysis by interfering with Ca2+translocation.


Sign in / Sign up

Export Citation Format

Share Document